Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dev Dyn ; 250(6): 866-879, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33587313

RESUMEN

BACKGROUND: Ambystoma mexicanum, the axolotl salamander, is a classic model organism used to study vertebrate regeneration. It is assumed that axolotls regenerate most tissues, but the exploration of lung regeneration has not been performed until now. RESULTS: Unlike the blastema-based response used during appendage regeneration, lung amputation led to organ-wide proliferation. Pneumocytes and mesenchymal cells responded to injury by increased proliferation throughout the injured lung, which led to a recovery in lung mass and morphology by 56 days post-amputation. Receptors associated with the Neuregulin signaling pathway were upregulated at one and 3 weeks post lung amputation. We show expression of the ligand, neuregulin, in the I/X cranial nerve that innervates the lung and cells within the lung. Supplemental administration of Neuregulin peptide induced widespread proliferation in the lung similar to an injury response, suggesting that neuregulin signaling may play a significant role during lung regeneration. CONCLUSION: Our study characterizes axolotl lung regeneration. We show that the lung responds to injury by an organ-wide proliferative response of multiple cell types, including pneumocytes, to recover lung mass.


Asunto(s)
Ambystoma mexicanum/fisiología , Proliferación Celular/fisiología , Lesión Pulmonar/fisiopatología , Pulmón/fisiología , Regeneración/fisiología , Animales , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Neurregulinas/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba
2.
J Immunol ; 199(8): 2803-2814, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28855313

RESUMEN

Acinetobacter baumannii is a bacterial pathogen with increasing impact in healthcare settings, due in part to this organism's resistance to many antimicrobial agents, with pneumonia and bacteremia as the most common manifestations of disease. A significant proportion of clinically relevant A. baumannii strains are resistant to killing by normal human serum (NHS), an observation supported in this study by showing that 12 out of 15 genetically diverse strains of A. baumannii are resistant to NHS killing. To expand our understanding of the genetic basis of A. baumannii serum resistance, a transposon (Tn) sequencing (Tn-seq) approach was used to identify genes contributing to this trait. An ordered Tn library in strain AB5075 with insertions in every nonessential gene was subjected to selection in NHS. We identified 50 genes essential for the survival of A. baumannii in NHS, including already known serum resistance factors, and many novel genes not previously associated with serum resistance. This latter group included the maintenance of lipid asymmetry genetic pathway as a key determinant in protecting A. baumannii from the bactericidal activity of NHS via the alternative complement pathway. Follow-up studies validated the role of eight additional genes identified by Tn-seq in A. baumannii resistance to killing by NHS but not by normal mouse serum, highlighting the human species specificity of A. baumannii serum resistance. The identification of a large number of genes essential for serum resistance in A. baumannii indicates the degree of complexity needed for this phenotype, which might reflect a general pattern that pathogens rely on to cause serious infections.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Actividad Bactericida de la Sangre , Neumonía/microbiología , Virulencia , Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/inmunología , Acinetobacter baumannii/patogenicidad , Animales , Vía Alternativa del Complemento/genética , Elementos Transponibles de ADN/genética , ADN Bacteriano/análisis , Humanos , Metabolismo de los Lípidos/genética , Ratones , Neumonía/inmunología , Factor de Respuesta Sérica/genética , Especificidad de la Especie , Transcriptoma , Virulencia/genética
3.
bioRxiv ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39386634

RESUMEN

Whether metastasis in humans can be accomplished by most primary tumor cells or requires the evolution of a specialized trait remains an open question. To evaluate whether metastases are founded by non-random subsets of primary tumor lineages requires extensive, difficult-to-implement sampling. We have realized an unusually dense multi-region sampling scheme in a cohort of 26 colorectal cancer patients with peritoneal metastases, reconstructing the evolutionary history of on average 28.8 tissue samples per patient with a microsatellite-based fingerprinting assay. To assess metastatic randomness, we evaluate inter- and intra-metastatic heterogeneity relative to the primary tumor and find that peritoneal metastases are more heterogeneous than liver metastases but less diverse than locoregional metastases. Metachronous peritoneal metastases exposed to systemic chemotherapy show significantly higher inter-lesion diversity than synchronous, untreated metastases. Projection of peritoneal metastasis origins onto a spatial map of the primary tumor reveals that they often originate at the deep-invading edge, in contrast to liver and lymph node metastases which exhibit no such preference. Furthermore, peritoneal metastases typically do not share a common subclonal origin with distant metastases in more remote organs. Synthesizing these insights into an evolutionary portrait of peritoneal metastases, we conclude that the peritoneal-metastatic process imposes milder selective pressures onto disseminating cancer cells than the liver-metastatic process. Peritoneal metastases' unique evolutionary features have potential implications for staging and treatment.

4.
Nat Genet ; 52(7): 692-700, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451459

RESUMEN

Genetic diversity among metastases is poorly understood but contains important information about disease evolution at secondary sites. Here we investigate inter- and intra-lesion heterogeneity for two types of metastases that associate with different clinical outcomes: lymph node and distant organ metastases in human colorectal cancer. We develop a rigorous mathematical framework for quantifying metastatic phylogenetic diversity. Distant metastases are typically monophyletic and genetically similar to each other. Lymph node metastases, in contrast, display high levels of inter-lesion diversity. We validate these findings by analyzing 317 multi-region biopsies from an independent cohort of 20 patients. We further demonstrate higher levels of intra-lesion heterogeneity in lymph node than in distant metastases. Our results show that fewer primary tumor lineages seed distant metastases than lymph node metastases, indicating that the two sites are subject to different levels of selection. Thus, lymph node and distant metastases develop through fundamentally different evolutionary mechanisms.


Asunto(s)
Neoplasias Colorrectales/patología , Metástasis Linfática , Estudios de Cohortes , Neoplasias Colorrectales/genética , Progresión de la Enfermedad , Heterogeneidad Genética , Variación Genética , Humanos , Metástasis Linfática/genética , Modelos Biológicos , Metástasis de la Neoplasia/genética , Siembra Neoplásica , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA