Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007417

RESUMEN

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Asunto(s)
Chara/genética , Genoma de Planta , Evolución Biológica , Pared Celular/metabolismo , Chara/crecimiento & desarrollo , Embryophyta/genética , Redes Reguladoras de Genes , Pentosiltransferasa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Genome Res ; 31(3): 436-447, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33479022

RESUMEN

Aggregative multicellularity has evolved multiple times in diverse groups of eukaryotes, exemplified by the well-studied development of dictyostelid social amoebas, for example, Dictyostelium discoideum However, it is still poorly understood why multicellularity emerged in these amoebas while the majority of other members of Amoebozoa are unicellular. Previously, a novel type of noncoding RNA, Class I RNAs, was identified in D. discoideum and shown to be important for normal multicellular development. Here, we investigated Class I RNA evolution and its connection to multicellular development. We identified a large number of new Class I RNA genes by constructing a covariance model combined with a scoring system based on conserved upstream sequences. Multiple genes were predicted in representatives of each major group of Dictyostelia and expression analysis confirmed that our search approach identifies expressed Class I RNA genes with high accuracy and sensitivity and that the RNAs are developmentally regulated. Further studies showed that Class I RNAs are ubiquitous in Dictyostelia and share highly conserved structure and sequence motifs. In addition, Class I RNA genes appear to be unique to dictyostelid social amoebas because they could not be identified in outgroup genomes, including their closest known relatives. Our results show that Class I RNA is an ancient class of ncRNAs, likely to have been present in the last common ancestor of Dictyostelia dating back at least 600 million years. Based on previous functional analyses and the presented evolutionary investigation, we hypothesize that Class I RNAs were involved in evolution of multicellularity in Dictyostelia.


Asunto(s)
Dictyostelium/citología , Dictyostelium/genética , Evolución Molecular , Filogenia , ARN no Traducido/genética , Dictyostelium/clasificación
3.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34694402

RESUMEN

It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.


Asunto(s)
Estramenopilos , Filogenia , Plastidios/genética
4.
Nature ; 541(7638): 536-540, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28092920

RESUMEN

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


Asunto(s)
Aclimatación/genética , Frío , Diatomeas/genética , Evolución Molecular , Genoma/genética , Genómica , Alelos , Dióxido de Carbono/metabolismo , Oscuridad , Diatomeas/metabolismo , Congelación , Perfilación de la Expresión Génica , Flujo Genético , Cubierta de Hielo , Hierro/metabolismo , Tasa de Mutación , Océanos y Mares , Filogenia , Recombinación Genética , Transcriptoma/genética
5.
Genomics ; 113(2): 646-654, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33485954

RESUMEN

Kelp species (Laminariales, Phaeophyceae) are globally widespread along temperate to Polar rocky coastal lines. Here we analyse the mitochondrial and chloroplast genomes of Laminaria rodriguezii, in comparison to the organellar genomes of other kelp species. We also provide the complete mitochondrial genome sequence of another endemic kelp species from a Polar habitat, the Arctic Laminaria solidungula. We compare phylogenetic trees derived from twenty complete mitochondrial and seven complete chloroplast kelp genomes. Interestingly, we found a stretch of more than 700 bp in the mitochondrial genome of L.rodriguezii, which is not present in any other yet sequenced member of the Phaeophyceae. This stretch matches a protein coding region in the mitochondrial genome from Desmarestia viridis, another brown seaweed. Their high similarity suggests that these sequences originated through independent introduction into the two species. Their origin could have been by infection by yet unknown similar mitoviruses, currently only known from fungi and plants.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Phaeophyceae/genética , Filogenia , Evolución Molecular , Transferencia de Gen Horizontal , Phaeophyceae/clasificación
6.
BMC Genomics ; 22(1): 444, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126926

RESUMEN

BACKGROUND: Autophagy is an evolutionary ancient mechanism that sequesters substrates for degradation within autolysosomes. The process is driven by many autophagy-related (ATG) proteins, including the core members ATG9 and ATG16. However, the functions of these two core ATG proteins still need further elucidation. Here, we applied RNAseq and tandem mass tag (TMT) proteomic approaches to identify differentially expressed genes (DEGs) and proteins (DEPs) in Dictyostelium discoideum ATG9‾, ATG16‾ and ATG9‾/16‾ strains in comparison to AX2 wild-type cells. RESULT: In total, we identified 332 (279 up and 53 down), 639 (487 up and 152 down) and 260 (114 up and 146 down) DEGs and 124 (83 up and 41 down), 431 (238 up and 193 down) and 677 (347 up and 330 down) DEPs in ATG9‾, ATG16‾ and ATG9‾/16‾ strains, respectively. Thus, in the single knock-out strains, the number of DEGs was higher than the number of DEPs while in the double knock-out strain the number of DEPs was higher. Comparison of RNAseq and proteomic data further revealed, that only a small proportion of the transcriptional changes were reflected on the protein level. Gene ontology (GO) analysis revealed an enrichment of DEPs involved in lipid metabolism and oxidative phosphorylation. Furthermore, we found increased expression of the anti-oxidant enzymes glutathione reductase (gsr) and catalase A (catA) in ATG16‾ and ATG9‾/16‾ cells, respectively, indicating adaptation to excess reactive oxygen species (ROS). CONCLUSIONS: Our study provides the first combined transcriptome and proteome analysis of ATG9‾, ATG16‾ and ATG9‾/16‾ cells. Our results suggest, that most changes in protein abundance were not caused by transcriptional changes, but were rather due to changes in protein homeostasis. In particular, knock-out of atg9 and/or atg16 appears to cause dysregulation of lipid metabolism and oxidative phosphorylation.


Asunto(s)
Dictyostelium , Autofagia/genética , Dictyostelium/genética , Proteómica , Proteínas Protozoarias/genética , ARN
7.
Mol Ecol ; 29(24): 4913-4924, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672394

RESUMEN

The Southern Ocean is characterized by longitudinal water circulations crossed by strong latitudinal gradients. How this oceanographic background shapes planktonic populations is largely unknown, despite the significance of this region for global biogeochemical cycles. Here, we show, based on genomic, morphometric, ecophysiological and mating compatibility data, an example of ecotypic differentiation and speciation within an endemic pelagic inhabitant, the diatom Fragilariopsis kerguelensis. We discovered three genotypic variants, one present throughout the latitudinal transect sampled, the others restricted to the north and south, respectively. The latter two showed reciprocal monophyly across all three genomes and significant ecophysiological differences consistent with local adaptation, but produced viable offspring in laboratory crosses. The third group was also reproductively isolated from the latter two. We hypothesize that this pattern originated by an adaptive expansion accompanied by ecotypic divergence, followed by sympatric speciation.


Asunto(s)
Diatomeas , Diatomeas/genética , Genotipo , Océanos y Mares
8.
Physiol Plant ; 168(1): 5-26, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31267544

RESUMEN

The Arctic region is currently facing substantial environmental changes due to global warming. Melting glaciers cause reduced salinity environments in coastal Arctic habitats, which may be stressful for kelp beds. To investigate the responses of the kelp Saccharina latissima to the warming Arctic, we studied the transcriptomic changes of S. latissima from Kongsfjorden (Svalbard, Norway) over a 24-hour exposure to two salinities (Absolute Salinity [SA ] 20 and 30) after a 7-day pre-acclimation at three temperatures (0, 8 and 15°C). In addition, corresponding physiological data were assessed during an 11-days salinity/temperature experiment. Growth and maximal quantum yield for photosystem II fluorescence were positively affected by increased temperature during acclimation, whereas hyposalinity caused negative effects at the last day of treatment. In contrast, hyposalinity induced marked changes on the transcriptomic level. Compared to the control (8°C - SA 30), the 8°C - SA 20 exhibited the highest number of differentially expressed genes (DEGs), followed by the 0°C - SA 20. Comparisons indicate that S. latissima tends to convert its energy from primary metabolism (e.g. photosynthesis) to antioxidant activity under hyposaline stress. The increase in physiological performance at 15°C shows that S. latissima in the Arctic region can adjust and might even benefit from increased temperatures. However, in Arctic fjord environments its performance might become impaired by decreased salinity as a result of ice melting.


Asunto(s)
Aclimatación , Cambio Climático , Kelp/fisiología , Phaeophyceae/fisiología , Transcriptoma , Regiones Árticas , Fotosíntesis , Complejo de Proteína del Fotosistema II/fisiología , Salinidad , Estrés Fisiológico , Svalbard
9.
BMC Plant Biol ; 19(1): 513, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31775614

RESUMEN

BACKGROUND: Kelps (Laminariales, Phaeophyceae) are brown macroalgae of utmost ecological, and increasingly economic, importance on temperate to polar rocky shores. Omics approaches in brown algae are still scarce and knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environments can benefit from the application of RNA-sequencing. Despite evidence of ecotypic differentiation, transcriptomic responses from distinct geographical locations have, to our knowledge, never been studied in the sugar kelp Saccharina latissima so far. RESULTS: In this study we investigated gene expression responses using RNA-sequencing of S. latissima from environments with contrasting temperature and salinity conditions - Roscoff, in temperate eastern Atlantic, and Spitsbergen in the Arctic. Juvenile sporophytes derived from uniparental stock cultures from both locations were pre-cultivated at 8 °C and SA 30. Sporophytes acclimated to 0 °C, 8 °C and 15 °C were exposed to a low salinity treatment (SA 20) for 24 h. Hyposalinity had a greater impact at the transcriptomic level than the temperature alone, and its effects were modulated by temperature. Namely, photosynthesis and pigment synthesis were extensively repressed by low salinity at low temperatures. Although some responses were shared among sporophytes from the different sites, marked differences were revealed by principal component analysis, differential expression and GO enrichment. The interaction between low temperature and low salinity drove the largest changes in gene expression in sporophytes from Roscoff while specimens from Spitsbergen required more metabolic adjustment at higher temperatures. Moreover, genes related to cell wall adjustment were differentially expressed between Spitsbergen and Roscoff control samples. CONCLUSIONS: Our study reveals interactive effects of temperature and salinity on transcriptomic profiles in S. latissima. Moreover, our data suggest that under identical culture conditions sporophytes from different locations diverge in their transcriptomic responses. This is probably connected to variations in temperature and salinity in their respective environment of origin. The current transcriptomic results support the plastic response pattern in sugar kelp which is a species with several reported ecotypes. Our data provide the baseline for a better understanding of the underlying processes of physiological plasticity and may help in the future to identify strains adapted to specific environments and its genetic control.


Asunto(s)
Kelp/genética , Estrés Fisiológico , Transcriptoma , Aclimatación , Perfilación de la Expresión Génica , Fotosíntesis , Filogeografía , Salinidad , Estrés Fisiológico/genética , Temperatura
10.
Nature ; 499(7457): 209-13, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23760476

RESUMEN

Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.


Asunto(s)
Genoma/genética , Haptophyta/genética , Haptophyta/aislamiento & purificación , Fitoplancton/genética , Calcificación Fisiológica , Calcio/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Ecosistema , Haptophyta/clasificación , Haptophyta/metabolismo , Océanos y Mares , Filogenia , Proteoma/genética , Agua de Mar
11.
Proc Natl Acad Sci U S A ; 112(27): 8362-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100883

RESUMEN

Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits.


Asunto(s)
Brassicaceae/genética , Mariposas Diurnas/genética , Duplicación de Gen , Genoma de los Insectos/genética , Genoma de Planta/genética , Animales , Teorema de Bayes , Biodiversidad , Brassicaceae/clasificación , Brassicaceae/parasitología , Mariposas Diurnas/clasificación , Mariposas Diurnas/fisiología , Evolución Molecular , Expresión Génica , Genes de Insecto/genética , Genes de Plantas/genética , Variación Genética , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Filogenia , Proteínas de Plantas/genética , Especificidad de la Especie
12.
BMC Genomics ; 18(1): 120, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143409

RESUMEN

BACKGROUND: Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. RESULTS: An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. CONCLUSIONS: In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects.


Asunto(s)
Amoeba/genética , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Transcriptoma , Amoeba/clasificación , Clonación Molecular , Biología Computacional/métodos , Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados
13.
BMC Genomics ; 17(1): 871, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814692

RESUMEN

BACKGROUND: The developmental cycle of Dictyostelid amoebae represents an early form of multicellularity with cell type differentiation. Mutant studies in the model Dictyostelium discoideum revealed that its developmental program integrates the actions of genes involved in signal transduction, adhesion, motility, autophagy and cell wall and matrix biosynthesis. However, due to functional redundancy and fail safe options not required in the laboratory, this single organism approach cannot capture all essential genes. To understand how multicellular organisms evolved, it is essential to recognize both the conserved core features of their developmental programs and the gene modifications that instigated phenotypic innovation. For complex organisms, such as animals, this is not within easy reach, but it is feasible for less complex forms, such as the Dictyostelid social amoebas. RESULTS: We compared global profiles of gene expression during the development of four social amoebae species that represent 600 mya of Dictyostelia evolution, and identified orthologous conserved genes with similar developmental up-regulation of expression using three different methods. For validation, we disrupted five genes of this core set and examined the phenotypic consequences. CONCLUSION: At least 71 of the developmentally regulated genes that were identified with all methods were likely to be already present in the last ancestor of all Dictyostelia. The lack of phenotypic changes in null mutants indicates that even highly conserved genes either participate in functionally redundant pathways or are necessary for developmental progression under adverse, non-standard laboratory conditions. Both mechanisms provide robustness to the developmental program, but impose a limit on the information that can be obtained from deleting single genes.


Asunto(s)
Amoeba/genética , Evolución Molecular , Expresión Génica , Amoeba/clasificación , Secuencia Conservada , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ontología de Genes , Genoma , Mutación , Filogenia
15.
Mol Ecol ; 25(6): 1294-307, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26841307

RESUMEN

Toxic microalgae have their own pathogens, and understanding the way in which these microalgae respond to antagonistic attacks may provide information about their capacity to persist during harmful algal bloom events. Here, we compared the effects of the physical presence of the parasite Amoebophrya sp. and exposure to waterborne cues from cultures infected with this parasite, on gene expression by the toxic dinoflagellates, Alexandrium fundyense. Compared with control samples, a total of 14,882 Alexandrium genes were differentially expressed over the whole-parasite infection cycle at three different time points (0, 6 and 96 h). RNA sequencing analyses indicated that exposure to the parasite and parasitic waterborne cues produced significant changes in the expression levels of Alexandrium genes associated with specific metabolic pathways. The observed upregulation of genes associated with glycolysis, the tricarboxylic acid cycle, fatty acid ß-oxidation, oxidative phosphorylation and photosynthesis suggests that parasite infection increases the energy demand of the host. The observed upregulation of genes correlated with signal transduction indicates that Alexandrium could be sensitized by parasite attacks. This response might prime the defence of the host, as indicated by the increased expression of several genes associated with defence and stress. Our findings provide a molecular overview of the response of a dinoflagellate to parasite infection.


Asunto(s)
Dinoflagelados/genética , Dinoflagelados/parasitología , Interacciones Huésped-Parásitos , Parásitos/química , Transcriptoma , Animales , Perfilación de la Expresión Génica , Floraciones de Algas Nocivas , Redes y Vías Metabólicas , Microalgas/genética , Microalgas/parasitología , Análisis de Secuencia de ARN , Transducción de Señal
16.
Nucleic Acids Res ; 42(5): 3177-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24353314

RESUMEN

NKAP is a highly conserved protein with roles in transcriptional repression, T-cell development, maturation and acquisition of functional competency and maintenance and survival of adult hematopoietic stem cells. Here we report the novel role of NKAP in splicing. With NKAP-specific antibodies we found that NKAP localizes to nuclear speckles. NKAP has an RS motif at the N-terminus followed by a highly basic domain and a DUF 926 domain at the C-terminal region. Deletion analysis showed that the basic domain is important for speckle localization. In pull-down experiments, we identified RNA-binding proteins, RNA helicases and splicing factors as interaction partners of NKAP, among them FUS/TLS. The FUS/TLS-NKAP interaction takes place through the RS domain of NKAP and the RGG1 and RGG3 domains of FUS/TLS. We analyzed the ability of NKAP to interact with RNA using in vitro splicing assays and found that NKAP bound both spliced messenger RNA (mRNA) and unspliced pre-mRNA. Genome-wide analysis using crosslinking and immunoprecipitation-seq revealed NKAP association with U1, U4 and U5 small nuclear RNA, and we also demonstrated that knockdown of NKAP led to an increase in pre-mRNA percentage. Our results reveal NKAP as nuclear speckle protein with roles in RNA splicing and processing.


Asunto(s)
ARN/metabolismo , Proteínas Represoras/metabolismo , Animales , Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Nucleares/análisis , Estructura Terciaria de Proteína , ARN Helicasas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/análisis , Proteínas Represoras/química
17.
Genome Res ; 22(6): 1098-106, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22434426

RESUMEN

Dictyostelium discoideum is an amoebozoa that exists in both a free-living unicellular and a multicellular form. It is situated in a deep branch in the evolutionary tree and is particularly noteworthy in having a very A/T-rich genome. Dictyostelium provides an ideal system to examine the extreme to which nucleotide bias may be employed in organizing promoters, genes, and nucleosomes across a genome. We find that Dictyostelium genes are demarcated precisely at their 5' ends by poly-T tracts and precisely at their 3' ends by poly-A tracts. These tracts are also associated with nucleosome-free regions and are embedded with precisely positioned TATA boxes. Homo- and heteropolymeric tracts of A and T demarcate nucleosome border regions. Together, these findings reveal the presence of a variety of functionally distinct polymeric A/T elements. Strikingly, Dictyostelium chromatin may be organized in di-nucleosome units but is otherwise organized as in animals. This includes a +1 nucleosome in a position that predicts the presence of a paused RNA polymerase II. Indeed, we find a strong phylogenetic relationship between the presence of the NELF pausing factor and positioning of the +1 nucleosome. Pausing and +1 nucleosome positioning may have coevolved in animals.


Asunto(s)
Cromatina/genética , Dictyostelium/genética , Nucleosomas/genética , Poli A/genética , Poli T/genética , Animales , Genes , Filogenia , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , TATA Box/genética , Factores de Transcripción/genética
18.
Eukaryot Cell ; 13(11): 1439-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239978

RESUMEN

The regulatory circuits during infection of dinoflagellates by their parasites are largely unknown on the molecular level. Here we provide molecular insights into these infection dynamics. Alexandrium tamarense is one of the most prominent harmful algal bloom dinoflagellates. Its pathogen, the dinoflagellate parasitoid Amoebophrya sp., has been observed to infect and control the blooms of this species. We generated a data set of transcripts from three time points (0, 6, and 96 h) during the infection of this parasite-host system. Assembly of all transcript data from the parasitoid (>900,000 reads/313 Mbp with 454/Roche next-generation sequencing [NGS]) yielded 14,455 contigs, to which we mapped the raw transcript reads of each time point of the infection cycle. We show that particular surface lectins are expressed at the beginning of the infection cycle which likely mediate the attachment to the host cell. In a later phase, signal transduction-related genes together with transmembrane transport and cytoskeleton proteins point to a high integration of processes involved in host recognition, adhesion, and invasion. At the final maturation stage, cell division- and proliferation-related genes were highly expressed, reflecting the fast cell growth and nuclear division of the parasitoid. Our molecular insights into dinoflagellate parasitoid interactions point to general mechanisms also known from other eukaryotic parasites, especially from the Alveolata. These similarities indicate the presence of fundamental processes of parasitoid infection that have remained stable throughout evolution within different phyla.


Asunto(s)
Proteínas del Citoesqueleto/genética , Dinoflagelados/parasitología , Dinoflagelados/patogenicidad , Proteínas de Transporte de Membrana/genética , Secuencia de Bases , Adhesión Celular/genética , División Celular/genética , Proliferación Celular/genética , Dinoflagelados/genética , Regulación de la Expresión Génica/genética , Floraciones de Algas Nocivas , Lectinas/biosíntesis , Lectinas/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Esporas Protozoarias/genética
19.
Nucleic Acids Res ; 41(Database issue): D692-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193285

RESUMEN

Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.


Asunto(s)
Bases de Datos Genéticas , Eucariontes/genética , Genómica , Amebozoos/genética , Genoma Fúngico , Internet , Anotación de Secuencia Molecular
20.
Genome Res ; 21(11): 1882-91, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21757610

RESUMEN

Dictyostelium discoideum (DD), an extensively studied model organism for cell and developmental biology, belongs to the most derived group 4 of social amoebas, a clade of altruistic multicellular organisms. To understand genome evolution over long time periods and the genetic basis of social evolution, we sequenced the genomes of Dictyostelium fasciculatum (DF) and Polysphondylium pallidum (PP), which represent the early diverging groups 1 and 2, respectively. In contrast to DD, PP and DF have conventional telomere organization and strongly reduced numbers of transposable elements. The number of protein-coding genes is similar between species, but only half of them comprise an identifiable set of orthologous genes. In general, genes involved in primary metabolism, cytoskeletal functions and signal transduction are conserved, while genes involved in secondary metabolism, export, and signal perception underwent large differential gene family expansions. This most likely signifies involvement of the conserved set in core cell and developmental mechanisms, and of the diverged set in niche- and species-specific adaptations for defense and food, mate, and kin selection. Phylogenetic dating using a concatenated data set and extensive loss of synteny indicate that DF, PP, and DD split from their last common ancestor at least 0.6 billion years ago.


Asunto(s)
Dictyostelium/genética , Genoma de Protozoos , Filogenia , Secuencia de Aminoácidos/genética , Composición de Base , Transporte Biológico , Adhesión Celular/genética , Comunicación Celular/genética , Movimiento Celular/genética , Centrómero/genética , Centrómero/metabolismo , Citoesqueleto/genética , Dictyostelium/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Estructura Molecular , Nucleótidos Cíclicos/metabolismo , Sistemas de Lectura Abierta , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Sintenía , Telómero/genética , Telómero/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA