RESUMEN
MPV17 encodes a putative channel-forming protein of the inner mitochondrial membrane and is involved in mitochondrial deoxynucleotide homeostasis. MPV17 mutations were first reported in patients with Navajo neurohepatopathy, an autosomal recessive mitochondrial DNA depletion syndrome, characterized by early-onset liver failure, failure to thrive as well as central and peripheral neurological involvement. Recently, two patients with juvenile-onset peripheral sensorimotor neuropathy associated with an MVP17 c.122G>A (p.Arg41Gln) variant have been reported. Here, we describe five additional patients from two unrelated families with sensorimotor axonal neuropathy without hepatocerebral affection caused by homozygous MPV17 variants. Patients of the first family carried the known c.122G>A variant and affected individuals of the second family had a novel c.376-9T>G near-splice variant, which was shown to result in an in-frame deletion of 11 amino acids. This report provides further evidence that MPV17 mutations should be considered in patients with pure, non-syndromic axonal neuropathy.
Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso Periférico/genética , Polineuropatías/genética , Adolescente , Adulto , Edad de Inicio , Axones/patología , Niño , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/fisiopatología , Femenino , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/fisiopatología , Humanos , Hepatopatías/genética , Hepatopatías/fisiopatología , Fallo Hepático/genética , Fallo Hepático/fisiopatología , Masculino , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Polineuropatías/fisiopatología , Corteza Sensoriomotora/fisiopatología , Adulto JovenRESUMEN
OBJECTIVE: We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype-phenotype correlations. METHODS: We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed. RESULTS: We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3' and 5' exons. Seizures in patients with mutations in exons 4-5 were more pharmacoresponsive than in patients with mutations in exons 8-15. CONCLUSIONS: SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers.
RESUMEN
Brachmann-De Lange Syndrome (BDLS, MIM 122470) is a rare multiple congenital anomaly/mental retardation syndrome characterized by a variable phenotype including intrauterine fetal growth retardation, limb reduction and distinctive facial and skull features (low frontal hairline, synophrys, anteverted nostrils, long philtrum, downturned corners of the mouth, micro- and retrognathia, low-set ears and micro-/brachycephaly), as well as a significant psychological developmental delay. A proposed classification system for BDLS include a classic type with characteristic facial and skull changes, a mild type where similar changes may develop with time or may be partially expressed, and a third type including phenocopies, where phenotypic changes are casually related to chromosomal aneuploidies or teratogenic exposures. We report on a 22-week gestation fetus with BDLS, showing intrauterine fetal growth retardation, brachycephaly, micro-/retrognathia and monolateral single bone of the forearm, in a woman harboring diffuse large B-cell lymphoma. Meticulous family history was negative for malformations, syndromes, congenital anomalies or psychiatric disorders. There are very few reports of BDLS at early gestation, but to the best of our knowledge, this is the first case occurring simultaneously with a hematological neoplastic disease of the mother.
Asunto(s)
Síndrome de Cornelia de Lange/diagnóstico , Enfermedades Fetales/diagnóstico , Linfoma de Células B Grandes Difuso/diagnóstico , Adulto , Antineoplásicos/uso terapéutico , Síndrome de Cornelia de Lange/genética , Femenino , Enfermedades Fetales/genética , Pruebas Genéticas , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Embarazo , Segundo Trimestre del EmbarazoRESUMEN
Different mutations occurring in the unstable CGG repeat in 5' untranslated region of FMR1 gene are responsible for three fragile X-associated disorders. An expansion of over â¼200 CGG repeats when associated with abnormal methylation and inactivation of the promoter is the mutation termed 'full mutation' and is responsible for fragile X syndrome (FXS), a neurodevelopmental disorder described as the most common cause of inherited intellectual impairment. The term 'abnormal methylation' is used here to distinguish the DNA methylation induced by the expanded repeat from the 'normal methylation' occurring on the inactive X chromosomes in females with normal, premutation, and full mutation alleles. All male and roughly half of the female full mutation carriers have FXS. Another anomaly termed 'premutation' is characterized by the presence of 55 to â¼200 CGGs without abnormal methylation, and is the cause of two other diseases with incomplete penetrance. One is fragile X-associated primary ovarian insufficiency (FXPOI), which is characterized by a large spectrum of ovarian dysfunction phenotypes and possible early menopause as the end stage. The other is fragile X-associated tremor/ataxia syndrome (FXTAS), which is a late onset neurodegenerative disorder affecting males and females. Because of the particular pattern and transmission of the CGG repeat, appropriate molecular testing and reporting is very important for the optimal genetic counselling in the three fragile X-associated disorders. Here, we describe best practice guidelines for genetic analysis and reporting in FXS, FXPOI, and FXTAS, including carrier and prenatal testing.