Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Immunol ; 20(2): 116-118, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643262
2.
PLoS Pathog ; 19(4): e1011163, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068108

RESUMEN

ß- and γ-herpesviruses transcribe their late genes in a manner distinct from host transcription. This process is directed by a complex of viral transcriptional activator proteins that hijack cellular RNA polymerase II and an unknown set of additional factors. We employed proximity labeling coupled with mass spectrometry, followed by CRISPR and siRNA screening to identify proteins functionally associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) late gene transcriptional complex. These data revealed that the catalytic subunit of the viral DNA packaging motor, ORF29, is both dynamically associated with the viral transcriptional activator complex and potentiates gene expression late in infection. Through genetic mutation and deletion of ORF29, we establish that its catalytic activity potentiates viral transcription and is required for robust accumulation of essential late proteins during infection. Thus, we propose an expanded role for ORF29 that encompasses its established function in viral packaging and its newly discovered contributions to viral transcription and late gene expression in KSHV.


Asunto(s)
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Empaquetamiento del Genoma Viral , Replicación Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Expresión Génica , Regulación Viral de la Expresión Génica
3.
Nucleic Acids Res ; 51(1): 182-197, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36537232

RESUMEN

Alkaline exonucleases (AE) are present in several large DNA viruses including bacteriophage λ and herpesviruses, where they play roles in viral DNA processing during genome replication. Given the genetic conservation of AEs across viruses infecting different kingdoms of life, these enzymes likely assume central roles in the lifecycles of viruses where they have yet to be well characterized. Here, we applied a structure-guided functional analysis of the bifunctional AE in the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), called SOX. In addition to identifying a preferred DNA substrate preference for SOX, we define key residues important for DNA binding and DNA processing, and how SOX activity on DNA partially overlaps with its functionally separable cleavage of mRNA. By engineering these SOX mutants into KSHV, we reveal roles for its DNase activity in viral gene expression and infectious virion production. Our results provide mechanistic insight into gammaherpesviral AE activity as well as areas of functional conservation between this mammalian virus AE and its distant relative in phage λ.


Asunto(s)
Exonucleasas , Herpesvirus Humano 8 , Animales , Humanos , ADN Viral/metabolismo , Exonucleasas/genética , Expresión Génica , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/metabolismo , Mamíferos/genética , Virión/metabolismo , Replicación Viral
4.
PLoS Pathog ; 18(2): e1010099, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202449

RESUMEN

The mRNA 5' cap structure serves both to protect transcripts from degradation and promote their translation. Cap removal is thus an integral component of mRNA turnover that is carried out by cellular decapping enzymes, whose activity is tightly regulated and coupled to other stages of the mRNA decay pathway. The poxvirus vaccinia virus (VACV) encodes its own decapping enzymes, D9 and D10, that act on cellular and viral mRNA, but may be regulated differently than their cellular counterparts. Here, we evaluated the targeting potential of these viral enzymes using RNA sequencing from cells infected with wild-type and decapping mutant versions of VACV as well as in uninfected cells expressing D10. We found that D9 and D10 target an overlapping subset of viral transcripts but that D10 plays a dominant role in depleting the vast majority of human transcripts, although not in an indiscriminate manner. Unexpectedly, the splicing architecture of a gene influences how robustly its corresponding transcript is targeted by D10, as transcripts derived from intronless genes are less susceptible to enzymatic decapping by D10. As all VACV genes are intronless, preferential decapping of transcripts from intron-containing genes provides an unanticipated mechanism for the virus to disproportionately deplete host transcripts and remodel the infected cell transcriptome.


Asunto(s)
Poxviridae , Virus Vaccinia , Endorribonucleasas/metabolismo , Humanos , Poxviridae/genética , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virus Vaccinia/genética , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo
5.
PLoS Pathog ; 18(1): e1010236, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041709

RESUMEN

While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi's sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Genes Virales/genética , Herpesvirus Humano 8/genética , Sistemas CRISPR-Cas , Células HEK293 , Humanos
6.
Mol Cell ; 57(2): 349-60, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25544563

RESUMEN

Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.


Asunto(s)
Herpesvirus Humano 8/fisiología , Transcripción Genética , Regulación Viral de la Expresión Génica , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , ARN Polimerasa II/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
PLoS Pathog ; 16(2): e1008269, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032393

RESUMEN

In mammalian cells, widespread acceleration of cytoplasmic mRNA degradation is linked to impaired RNA polymerase II (Pol II) transcription. This mRNA decay-induced transcriptional repression occurs during infection with gammaherpesviruses including Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68), which encode an mRNA endonuclease that initiates widespread RNA decay. Here, we show that MHV68-induced mRNA decay leads to a genome-wide reduction of Pol II occupancy at mammalian promoters. This reduced Pol II occupancy is accompanied by down-regulation of multiple Pol II subunits and TFIIB in the nucleus of infected cells, as revealed by mass spectrometry-based global measurements of protein abundance. Viral genes, despite the fact that they require Pol II for transcription, escape transcriptional repression. Protection is not governed by viral promoter sequences; instead, location on the viral genome is both necessary and sufficient to escape the transcriptional repression effects of mRNA decay. We propose a model in which the ability to escape from transcriptional repression is linked to the localization of viral DNA within replication compartments, providing a means for these viruses to counteract decay-induced transcript loss.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiología , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Estabilidad del ARN , Rhadinovirus/fisiología , Replicación Viral , Animales , Endonucleasas/genética , Endonucleasas/metabolismo , Genoma Viral , Infecciones por Herpesviridae/genética , Ratones , Células 3T3 NIH , ARN Polimerasa II/genética , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
PLoS Pathog ; 16(9): e1008843, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886723

RESUMEN

ß- and γ-herpesviruses include the oncogenic human viruses Kaposi's sarcoma-associated virus (KSHV) and Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV), which is a significant cause of congenital disease. Near the end of their replication cycle, these viruses transcribe their late genes in a manner distinct from host transcription. Late gene transcription requires six virally encoded proteins, one of which is a functional mimic of host TATA-box-binding protein (TBP) that is also involved in recruitment of RNA polymerase II (Pol II) via unknown mechanisms. Here, we applied biochemical protein interaction studies together with electron microscopy-based imaging of a reconstituted human preinitiation complex to define the mechanism underlying Pol II recruitment. These data revealed that the herpesviral TBP, encoded by ORF24 in KSHV, makes a direct protein-protein contact with the C-terminal domain of host RNA polymerase II (Pol II), which is a unique feature that functionally distinguishes viral from cellular TBP. The interaction is mediated by the N-terminal domain (NTD) of ORF24 through a conserved motif that is shared in its ß- and γ-herpesvirus homologs. Thus, these herpesviruses employ an unprecedented strategy in eukaryotic transcription, wherein promoter recognition and polymerase recruitment are facilitated by a single transcriptional activator with functionally distinct domains.


Asunto(s)
Herpesvirus Humano 8/metabolismo , ARN Polimerasa II/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Unión Proteica , Dominios Proteicos , ARN Polimerasa II/genética , Proteína de Unión a TATA-Box/genética , Proteínas Virales/genética
10.
Crit Rev Biochem Mol Biol ; 54(4): 385-398, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31656086

RESUMEN

Transcription and RNA decay are key determinants of gene expression; these processes are typically considered as the uncoupled beginning and end of the messenger RNA (mRNA) lifecycle. Here we describe the growing number of studies demonstrating interplay between these spatially disparate processes in eukaryotes. Specifically, cells can maintain mRNA levels by buffering against changes in mRNA stability or transcription, and can also respond to virally induced accelerated decay by reducing RNA polymerase II gene expression. In addition to these global responses, there is also evidence that mRNAs containing a premature stop codon can cause transcriptional upregulation of homologous genes in a targeted fashion. In each of these systems, RNA binding proteins (RBPs), particularly those involved in mRNA degradation, are critical for cytoplasmic to nuclear communication. Although their specific mechanistic contributions are yet to be fully elucidated, differential trafficking of RBPs between subcellular compartments are likely to play a central role in regulating this gene expression feedback pathway.


Asunto(s)
Citoplasma/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Transcripción Genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Codón de Terminación/genética , Citoplasma/metabolismo , Exorribonucleasas/metabolismo , Expresión Génica , Homeostasis/genética , Humanos , Infecciones/genética , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
11.
J Biol Chem ; 295(37): 12910-12934, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32661197

RESUMEN

Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.


Asunto(s)
Infecciones por Coronavirus/virología , Coronavirus/fisiología , Regulación Viral de la Expresión Génica , Fenómenos Fisiológicos de los Virus , Animales , Antígenos Virales/inmunología , Coronavirus/genética , Coronavirus/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Interacciones Huésped-Patógeno , Humanos
12.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32404524

RESUMEN

Short interspersed nuclear elements (SINEs) are RNA polymerase III (RNAPIII)-transcribed, retrotransposable noncoding RNA (ncRNA) elements ubiquitously spread throughout mammalian genomes. While normally silenced in healthy somatic tissue, SINEs can be induced during infection with DNA viruses, including the model murine gammaherpesvirus 68 (MHV68). Here, we explored the mechanisms underlying MHV68 activation of SINE ncRNAs. We demonstrate that lytic MHV68 infection of B cells, macrophages, and fibroblasts leads to robust activation of the B2 family of SINEs in a cell-autonomous manner. B2 ncRNA induction requires neither host innate immune signaling factors nor involvement of the RNAPIII master regulator Maf1. However, we identified MHV68 ORF36, the conserved herpesviral kinase, as playing a key role in B2 induction during lytic infection. SINE activation is linked to ORF36 kinase activity and can also be induced by inhibition of histone deacetylases 1 and 2 (HCAC 1/2), which is one of the known ORF36 functions. Collectively, our data suggest that ORF36-mediated changes in chromatin modification contribute to B2 activation during MHV68 infection and that this activity is conserved in other herpesviral protein kinase homologs.IMPORTANCE Viral infection dramatically changes the levels of many types of RNA in a cell. In particular, certain oncogenic viruses activate expression of repetitive genes called retrotransposons, which are normally silenced due to their ability to copy and spread throughout the genome. Here, we established that infection with the gammaherpesvirus MHV68 leads to a dramatic induction of a class of noncoding retrotransposons called B2 SINEs in multiple cell types. We then explored how MHV68 activates B2 SINEs, revealing a role for the conserved herpesviral protein kinase ORF36. Both ORF36 kinase-dependent and kinase-independent functions contribute to B2 induction, perhaps through ORF36 targeting of proteins involved in controlling the accessibility of chromatin surrounding SINE loci. Understanding the features underlying induction of these elements following MHV68 infection should provide insight into core elements of SINE regulation, as well as disregulation of SINE elements associated with disease.


Asunto(s)
Infecciones por Herpesviridae/enzimología , Proteínas Quinasas/metabolismo , Retroelementos , Rhadinovirus/enzimología , Proteínas Virales/metabolismo , Animales , Linfocitos B/enzimología , Linfocitos B/patología , Linfocitos B/virología , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Macrófagos/enzimología , Macrófagos/patología , Macrófagos/virología , Ratones , Células 3T3 NIH , Proteínas Quinasas/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Rhadinovirus/genética , Proteínas Virales/genética
13.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31578296

RESUMEN

Late gene transcription in the beta- and gammaherpesviruses depends on a set of virally encoded transcriptional activators (vTAs) that hijack the host transcriptional machinery and direct it to a subset of viral genes that are required for completion of the viral replication cycle and capsid assembly. In Kaposi's sarcoma-associated herpesvirus (KSHV), these vTAs are encoded by ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. Assembly of the vTAs into a complex is critical for late gene transcription, and thus, deciphering the architecture of the complex is central to understanding its transcriptional regulatory activity. Here, we generated an ORF66-null virus and confirmed that it fails to produce late genes and infectious virions. We show that ORF66 is incorporated into the vTA complex primarily through its interaction with ORF34, which is dependent upon a set of four conserved cysteine-rich motifs in the C-terminal domain of ORF66. While both ORF24 and ORF66 occupy the canonical K8.1 late gene promoter, their promoter occupancy requires the presence of the other vTAs, suggesting that sequence-specific, stable binding requires assembly of the entire complex on the promoter. Additionally, we found that ORF24 expression is impaired in the absence of a stable vTA complex. This work extends our knowledge about the architecture of the KSHV viral preinitiation complex and suggests that it functions as a complex to recognize late gene promoters.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is an oncogenic gammaherpesvirus that is the causative agent of multiple human cancers. The release of infectious virions requires the production of capsid proteins and other late genes, whose production is transcriptionally controlled by a complex of six virally encoded proteins that hijack the host transcription machinery. It is poorly understood how this complex assembles or what function five of its six components play in transcription. Here, we demonstrate that ORF66 is an essential component of this complex in KSHV and that its inclusion in the complex depends upon its C-terminal domain, which contains highly conserved cysteine-rich motifs reminiscent of zinc finger motifs. Additionally, we examined the assembly of the viral preinitiation complex at late gene promoters and found that while sequence-specific binding of late gene promoters requires ORF24, it additionally requires a fully assembled viral preinitiation complex.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Herpesvirus Humano 8/metabolismo , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Dominios Proteicos , Proteínas Virales/genética
14.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305361

RESUMEN

In the beta- and gammaherpesviruses, a specialized complex of viral transcriptional activators (vTAs) coordinate to direct expression of virus-encoded late genes, which are critical for viral assembly and whose transcription initiates only after the onset of viral DNA replication. The vTAs in Kaposi's sarcoma-associated herpesvirus (KSHV) are ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. While the general organization of the vTA complex has been mapped, the individual roles of these proteins and how they coordinate to activate late gene promoters remain largely unknown. Here, we performed a comprehensive mutational analysis of the conserved residues in ORF18, which is a highly interconnected vTA component. Surprisingly, the mutants were largely selective for disrupting the interaction with ORF30 but not the other three ORF18 binding partners. Furthermore, disrupting the ORF18-ORF30 interaction weakened the vTA complex as a whole, and an ORF18 point mutant that failed to bind ORF30 was unable to complement an ORF18 null virus. Thus, contacts between individual vTAs are critical as even small disruptions in this complex result in profound defects in KSHV late gene expression.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma and other B-cell cancers and remains a leading cause of death in immunocompromised individuals. A key step in the production of infectious virions is the transcription of viral late genes, which generates capsid and structural proteins and requires the coordination of six viral proteins that form a complex. The role of these proteins during transcription complex formation and the importance of protein-protein interactions are not well understood. Here, we focused on a central component of the complex, ORF18, and revealed that disruption of its interaction with even a single component of the complex (ORF30) prevents late gene expression and completion of the viral lifecycle. These findings underscore how individual interactions between the late gene transcription components are critical for both the stability and function of the complex.


Asunto(s)
Herpesvirus Humano 8/fisiología , Mutación , Transactivadores/metabolismo , Proteínas Virales/genética , Sitios de Unión , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/química , Transactivadores/genética , Proteínas Virales/metabolismo , Replicación Viral
15.
PLoS Pathog ; 14(4): e1006995, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29659627

RESUMEN

Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.


Asunto(s)
Adenosina/análogos & derivados , Herpesvirus Humano 8/patogenicidad , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Sarcoma de Kaposi/patología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Adenosina/química , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/virología , Células Cultivadas , Células HEK293 , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/virología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología
16.
Nucleic Acids Res ; 46(22): 11968-11979, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30321376

RESUMEN

A number of viruses remodel the cellular gene expression landscape by globally accelerating messenger RNA (mRNA) degradation. Unlike the mammalian basal mRNA decay enzymes, which largely target mRNA from the 5' and 3' end, viruses instead use endonucleases that cleave their targets internally. This is hypothesized to more rapidly inactivate mRNA while maintaining selective power, potentially though the use of a targeting motif(s). Yet, how mRNA endonuclease specificity is achieved in mammalian cells remains largely unresolved. Here, we reveal key features underlying the biochemical mechanism of target recognition and cleavage by the SOX endonuclease encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). Using purified KSHV SOX protein, we reconstituted the cleavage reaction in vitro and reveal that SOX displays robust, sequence-specific RNA binding to residues proximal to the cleavage site, which must be presented in a particular structural context. The strength of SOX binding dictates cleavage efficiency, providing an explanation for the breadth of mRNA susceptibility observed in cells. Importantly, we establish that cleavage site specificity does not require additional cellular cofactors, as had been previously proposed. Thus, viral endonucleases may use a combination of RNA sequence and structure to capture a broad set of mRNA targets while still preserving selectivity.


Asunto(s)
Endonucleasas/genética , Herpesvirus Humano 8/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Virales/genética , Animales , Sitios de Unión , Endonucleasas/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Humanos , Insectos , Cinética , Mutación , División del ARN , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato , Proteínas Virales/metabolismo
17.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875246

RESUMEN

Herpesviral DNA packaging into nascent capsids requires multiple conserved viral proteins that coordinate genome encapsidation. Here, we investigated the role of the ORF68 protein of Kaposi's sarcoma-associated herpesvirus (KSHV), a protein required for viral DNA encapsidation whose function remains largely unresolved across the herpesviridae. We found that KSHV ORF68 is expressed with early kinetics and localizes predominantly to viral replication compartments, although it is dispensable for viral DNA replication and gene expression. However, in agreement with its proposed role in viral DNA packaging, KSHV-infected cells lacking ORF68 failed to cleave viral DNA concatemers, accumulated exclusively immature B capsids, and released no infectious progeny virions. ORF68 has no predicted domains aside from a series of putative zinc finger motifs. However, in vitro biochemical analyses of purified ORF68 protein revealed that it robustly binds DNA and is associated with nuclease activity. These activities provide new insights into the role of KSHV ORF68 in viral genome encapsidation.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma and several B-cell cancers, causing significant morbidity and mortality in immunocompromised individuals. A critical step in the production of infectious viral progeny is the packaging of the newly replicated viral DNA genome into the capsid, which involves coordination between at least seven herpesviral proteins. While the majority of these packaging factors have been well studied in related herpesviruses, the role of the KSHV ORF68 protein and its homologs remains unresolved. Here, using a KSHV mutant lacking ORF68, we confirm its requirement for viral DNA processing and packaging in infected cells. Furthermore, we show that the purified ORF68 protein directly binds DNA and is associated with a metal-dependent cleavage activity on double-stranded DNA in vitro These activities suggest a novel role for ORF68 in herpesviral genome processing and encapsidation.


Asunto(s)
ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Hidrólisis , Proteínas Virales/genética
18.
PLoS Pathog ; 13(8): e1006593, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28841715

RESUMEN

During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonu- clease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs, including the transcript encoding interleukin-6 (IL-6), escape SOX-induced cleavage. IL-6 escape is mediated through a 3' UTR RNA regulatory element that overrides the SOX targeting mechanism. Here, we reveal that this protective RNA element functions to broadly restrict cleavage by a range of homologous and non-homologous viral endonucleases. However, it does not impede cleavage by cellular endonucleases. The IL-6 protective sequence may be representative of a larger class of nuclease escape elements, as we identified a similar protective element in the GADD45B mRNA. The IL-6 and GADD45B-derived elements display similarities in their sequence, putative structure, and several associated RNA binding proteins. However, the overall composition of their ribonucleoprotein complexes appears distinct, leading to differences in the breadth of nucleases restricted. These findings highlight how RNA elements can selectively control transcript abundance in the background of widespread virus-induced mRNA degradation.


Asunto(s)
Regulación de la Expresión Génica , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno/fisiología , Interleucina-6/metabolismo , Estabilidad del ARN/fisiología , Western Blotting , Línea Celular , Endonucleasas/metabolismo , Herpesvirus Humano 8 , Humanos , Inmunoprecipitación , Hibridación Fluorescente in Situ , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo
19.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931686

RESUMEN

Our genomes are dominated by repetitive elements. The majority of these elements derive from retrotransposons, which expand throughout the genome through a process of reverse transcription and integration. Short interspersed nuclear elements, or SINEs, are an abundant class of retrotransposons that are transcribed by RNA polymerase III, thus generating exclusively noncoding RNA (ncRNA) that must hijack the machinery required for their transposition. SINE loci are generally transcriptionally repressed in somatic cells but can be robustly induced upon infection with multiple DNA viruses. Recent research has focused on the gene expression and signaling events that are modulated by SINE ncRNAs, particularly during gammaherpesvirus infection. Here, we review the biology of these SINE ncRNAs, explore how DNA virus infection may lead to their induction, and describe how novel gene regulatory and immune-related functions of these ncRNAs may impact the viral life cycle.


Asunto(s)
Virus ADN/genética , ARN no Traducido/genética , Retroelementos/genética , Elementos de Nucleótido Esparcido Corto , Animales , Virus ADN/fisiología , Expresión Génica , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Ratones , ARN Polimerasa III/genética , ARN no Traducido/metabolismo , Transducción de Señal
20.
Proc Natl Acad Sci U S A ; 112(31): E4306-15, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26199418

RESUMEN

Infection of cells with DNA viruses triggers innate immune responses mediated by DNA sensors. cGMP-AMP synthase (cGAS) is a key DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which binds to and activates stimulator of interferon genes (STING), leading to IFN production and an antiviral response. Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA virus that is linked to several human malignancies. We report that KSHV infection activates the cGAS-STING pathway, and that cGAS and STING also play an important role in regulating KSHV reactivation from latency. We screened KSHV proteins for their ability to inhibit this pathway and identified six viral proteins that block IFN-ß activation through this pathway. This study is the first report identifying multiple viral proteins encoded by a human DNA virus that inhibit the cGAS-STING DNA sensing pathway. One such protein, viral interferon regulatory factor 1 (vIRF1), targets STING by preventing it from interacting with TANK binding kinase 1 (TBK1), thereby inhibiting STING's phosphorylation and concomitant activation, resulting in an inhibition of the DNA sensing pathway. Our data provide a unique mechanism for the negative regulation of STING-mediated DNA sensing. Moreover, the depletion of vIRF1 in the context of KSHV infection prevented efficient viral reactivation and replication, and increased the host IFN response to KSHV. The vIRF1-expressing cells also inhibited IFN-ß production following infection with DNA pathogens. Collectively, our results demonstrate that gammaherpesviruses encode inhibitors that block cGAS-STING-mediated antiviral immunity, and that modulation of this pathway is important for viral transmission and the lifelong persistence of herpesviruses in the human population.


Asunto(s)
ADN Viral/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Secuencia de Bases , ADN Viral/genética , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factor 1 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Activación Viral , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA