Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Med Inform Decis Mak ; 23(1): 36, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793076

RESUMEN

BACKGROUND: The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately cellular changes related to disease conditions. To further develop the understanding of specific pathological and histopathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive framework is required to enable integration and analysis in spatial terms. METHODS: We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowledge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions in both a 2D model and 3D models, such as a patient's CT scan where the gut has been segmented. RESULTS: The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly accessible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the user to explore the anatomical space of the gut. All data and software is fully open-source and available online. CONCLUSIONS: Small and large intestines have a natural "gut coordinate" system best represented as a 1D centreline through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the intestines. This permits users to accurately locate samples for data comparison.


Asunto(s)
Imagenología Tridimensional , Programas Informáticos , Humanos , Imagenología Tridimensional/métodos
2.
PLoS Genet ; 13(7): e1006926, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28749988

RESUMEN

Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs) combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+) RNAs (transcriptome) in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby genes in both mutant spermatocytes, suggesting that retrotransposon silencing is important for the maintenance of not only genomic integrity but also transcriptomic integrity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Células Germinativas/crecimiento & desarrollo , Proteínas Mitocondriales/genética , Fosfolipasa D/genética , Transcripción Genética , Animales , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Interferencia de ARN , Estabilidad del ARN/genética , ARN Interferente Pequeño/genética , Retroelementos/genética , Espermatocitos/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Transcriptoma/genética
3.
RNA ; 20(11): 1789-802, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25246652

RESUMEN

Neuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were up-regulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were down-regulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.


Asunto(s)
Axones/patología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Axones/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma
4.
Biomater Adv ; 145: 213250, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563509

RESUMEN

Regenerative medicine strategies place increasingly sophisticated demands on 3D biomaterials to promote tissue formation at sites where tissue would otherwise not form. Ideally, the discovery/fabrication of the 3D scaffolds needs to be high-throughput and uniform to ensure quick and in-depth analysis in order to pinpoint appropriate chemical and mechanical properties of a biomaterial. Herein we present a versatile technique to screen new potential biocompatible acrylate-based 3D scaffolds with the ultimate aim of application in tissue repair. As part of this process, we identified an acrylate-based 3D porous scaffold that promoted cell proliferation followed by accelerated tissue formation, pre-requisites for tissue repair. Scaffolds were fabricated by a facile freeze-casting and an in-situ photo-polymerization route, embracing a high-throughput synthesis, screening and characterization protocol. The current studies demonstrate the dependence of cellular growth and vascularization on the porosity and intrinsic chemical nature of the scaffolds, with tuneable 3D scaffolds generated with large, interconnected pores suitable for cellular growth applied to skeletal reparation. Our studies showed increased cell proliferation, collagen and ALP expression, while chorioallantoic membrane assays indicated biocompatibility and demonstrated the angiogenic nature of the scaffolds. VEGRF2 expression in vivo observed throughout the 3D scaffolds in the absence of growth factor supplementation demonstrates a potential for angiogenesis. This novel platform provides an innovative approach to 3D scanning of synthetic biomaterials for tissue regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Colágeno , Huesos
5.
J Clin Med ; 12(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373578

RESUMEN

Crohn's disease (CD) is a chronic inflammatory bowel disease with a high prevalence throughout the world. The development of Crohn's-related fibrosis, which leads to strictures in the gastrointestinal tract, presents a particular challenge and is associated with significant morbidity. There are currently no specific anti-fibrotic therapies available, and so treatment is aimed at managing the stricturing complications of fibrosis once it is established. This often requires invasive and repeated endoscopic or surgical intervention. The advent of single-cell sequencing has led to significant advances in our understanding of CD at a cellular level, and this has presented opportunities to develop new therapeutic agents with the aim of preventing or reversing fibrosis. In this paper, we discuss the current understanding of CD fibrosis pathogenesis, summarise current management strategies, and present the promise of single-cell sequencing as a tool for the development of effective anti-fibrotic therapies.

6.
J Pathol Inform ; 14: 100328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693862

RESUMEN

Pathologists need to compare histopathological images of normal and diseased tissues between different samples, cases, and species. We have designed an interactive system, termed Comparative Pathology Workbench (CPW), which allows direct and dynamic comparison of images at a variety of magnifications, selected regions of interest, as well as the results of image analysis or other data analyses such as scRNA-seq. This allows pathologists to indicate key diagnostic features, with a mechanism to allow discussion threads amongst expert groups of pathologists and other disciplines. The data and associated discussions can be accessed online from anywhere in the world. The Comparative Pathology Workbench (CPW) is a web-browser-based visual analytics platform providing shared access to an interactive "spreadsheet" style presentation of image and associated analysis data. The CPW provides a grid layout of rows and columns so that images that correspond to matching data can be organised in the form of an image-enabled "spreadsheet". An individual workbench can be shared with other users with read-only or full edit access as required. In addition, each workbench element or the whole bench itself has an associated discussion thread to allow collaborative analysis and consensual interpretation of the data. The CPW is a Django-based web-application that hosts the workbench data, manages users, and user-preferences. All image data are hosted by other resource applications such as OMERO or the Digital Slide Archive. Further resources can be added as required. The discussion threads are managed using WordPress and include additional graphical and image data. The CPW has been developed to allow integration of image analysis outputs from systems such as QuPath or ImageJ. All software is open-source and available from a GitHub repository.

7.
Hum Mol Genet ; 19(10): 1951-66, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20167579

RESUMEN

Axonal transport and translation of beta-actin mRNA plays an important role for axonal growth and presynaptic differentiation in many neurons including hippocampal, cortical and spinal motor neurons. Several beta-actin mRNA-binding and transport proteins have been identified, including ZBP1, ZBP2 and hnRNP-R. hnRNP-R has been found as an interaction partner of the survival motor neuron protein that is deficient in spinal muscular atrophy. Little is known about the function of hnRNP-R in axonal beta-actin translocation. hnRNP-R and beta-actin mRNA are colocalized in axons. Recombinant hnRNP-R interacts directly with the 3'-UTR of beta-actin mRNA. We studied the role of hnRNP-R in motor neurons by knockdown in zebrafish embryos and isolated mouse motor neurons. Suppression of hnRNP-R in developing zebrafish embryos results in reduced axon growth in spinal motor neurons, without any alteration in motor neuron survival. ShRNA-mediated knockdown in isolated embryonic mouse motor neurons reduces beta-actin mRNA translocation to the axonal growth cone, which is paralleled by reduced axon elongation. Dendrite growth and neuronal survival were not affected by hnRNP-R depletion in these neurons. The loss of beta-actin mRNA in axonal growth cones of hnRNP-R-depleted motor neurons resembles that observed in Smn-deficient motor neurons, a model for the human disease spinal muscular atrophy. In particular, hnRNP-R-depleted motor neurons also exhibit defects in presynaptic clustering of voltage-gated calcium channels. Our data suggest that hnRNP-R-mediated axonal beta-actin mRNA translocation plays an essential physiological role for axon growth and presynaptic differentiation.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neuronas Motoras/metabolismo , Transporte de ARN , Columna Vertebral/metabolismo , Proteínas de Pez Cebra/metabolismo , Regiones no Traducidas 3'/genética , Actinas/genética , Animales , Axones/patología , Canales de Calcio Tipo N/metabolismo , Separación Celular , Embrión no Mamífero/patología , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ratones , Neuronas Motoras/patología , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Pez Cebra/metabolismo
8.
Methods Mol Biol ; 2147: 63-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840811

RESUMEN

Biofabrication is revolutionizing substitute tissue manufacturing. Skeletal stem cells (SSCs) can be blended with hydrogel biomaterials and printed to form three-dimensional structures that can closely mimic tissues of interest. Our bioink formulation takes into account the potential for cell printing including a bioink nanocomposite that contains low fraction polymeric content to facilitate cell encapsulation and survival, while preserving hydrogel integrity and mechanical properties following extrusion. Clay inclusion to the nanocomposite strengthens the alginate-methylcellulose network providing a biopaste with unique shear-thinning properties that can be easily prepared under sterile conditions. SSCs can be mixed with the clay-based paste, and the resulting bioink can be printed in 3D structures ready for implantation. In this chapter, we provide the methodology for preparation, encapsulation, and printing of SSCs in a unique clay-based bioink.


Asunto(s)
Bioimpresión/métodos , Regeneración Ósea/fisiología , Arcilla/química , Nanocompuestos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Sustitutos de Huesos/síntesis química , Sustitutos de Huesos/química , Huesos/citología , Huesos/fisiología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Humanos , Tinta , Microtecnología/métodos , Impresión Tridimensional , Silicatos/química , Células Madre/citología , Células Madre/fisiología , Ingeniería de Tejidos/instrumentación
9.
Biofabrication ; 12(3): 035010, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32259804

RESUMEN

Acellular soft hydrogels are not ideal for hard tissue engineering given their poor mechanical stability, however, in combination with cellular components offer significant promise for tissue regeneration. Indeed, nanocomposite bioinks provide an attractive platform to deliver human bone marrow stromal cells (HBMSCs) in three dimensions producing cell-laden constructs that aim to facilitate bone repair and functionality. Here we present the in vitro, ex vivo and in vivo investigation of bioprinted HBMSCs encapsulated in a nanoclay-based bioink to produce viable and functional three-dimensional constructs. HBMSC-laden constructs remained viable over 21 d in vitro and immediately functional when conditioned with osteogenic media. 3D scaffolds seeded with human umbilical vein endothelial cells (HUVECs) and loaded with vascular endothelial growth factor (VEGF) implanted ex vivo into a chick chorioallantoic membrane (CAM) model showed integration and vascularisation after 7 d of incubation. In a pre-clinical in vivo application of a nanoclay-based bioink to regenerate skeletal tissue, we demonstrated bone morphogenetic protein-2 (BMP-2) absorbed scaffolds produced extensive mineralisation after 4 weeks (p < 0.0001) compared to the drug-free and alginate controls. In addition, HBMSC-laden 3D printed scaffolds were found to significantly (p < 0.0001) support bone tissue formation in vivo compared to acellular and cast scaffolds. These studies illustrate the potential of nanoclay-based bioink, to produce viable and functional constructs for clinically relevant skeletal tissue regeneration.


Asunto(s)
Huesos/irrigación sanguínea , Arcilla/química , Minerales/metabolismo , Nanocompuestos/química , Neovascularización Fisiológica , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Proteína Morfogenética Ósea 2/farmacología , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Pollos , Membrana Corioalantoides/efectos de los fármacos , Humanos , Implantes Experimentales , Ratones , Modelos Animales , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Silicatos/química , Tejido Subcutáneo/efectos de los fármacos
10.
Biofabrication ; 11(3): 035027, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30991370

RESUMEN

Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, advanced bioinks encapsulating living cells should: (i) present optimal rheological properties and retain 3D structure post fabrication, (ii) promote cell viability and support cell differentiation, and (iii) localise proteins of interest (e.g. vascular endothelial growth factor (VEGF)) to stimulate encapsulated cell activity and tissue ingrowth upon implantation. In this study, we present the results of the inclusion of a synthetic nanoclay, Laponite® (LPN) together with a gelatin methacryloyl (GelMA) bioink and the development of a functional cell-instructive bioink. A nanocomposite bioink displaying enhanced shape fidelity retention and interconnected porosity within extrusion-bioprinted fibres was observed. Human bone marrow stromal cell (HBMSC) viability within the nanocomposite showed no significant changes over 21 days of culture in LPN-GelMA (85.60 ± 10.27%), compared to a significant decrease in GelMA from 7 (95.88 ± 2.90%) to 21 days (55.54 ± 14.72%) (p < 0.01). HBMSCs were observed to proliferate in LPN-GelMA with a significant increase in cell number over 21 days (p < 0.0001) compared to GelMA alone. HBMSC-laden LPN-GelMA scaffolds supported osteogenic differentiation evidenced by mineralised nodule formation, including in the absence of the osteogenic drug dexamethasone. Ex vivo implantation in a chick chorioallantoic membrane model, demonstrated excellent integration of the bioink constructs in the vascular chick embryo after 7 days of incubation. VEGF-loaded LPN-GelMA constructs demonstrated significantly higher vessel penetration than GelMA-VEGF (p < 0.0001) scaffolds. Integration and vascularisation was directly related to increased drug absorption and retention by LPN-GelMA compared to LPN-free GelMA. In summary, a novel light-curable nanocomposite bioink for 3D skeletal regeneration supportive of cell growth and growth factor retention and delivery, evidenced by ex vivo vasculogenesis, was developed with potential application in hard and soft tissue reparation.


Asunto(s)
Gelatina/química , Tinta , Nanocompuestos/química , Neovascularización Fisiológica , Osteogénesis , Silicatos/química , Animales , Bioimpresión , Bovinos , Proliferación Celular , Supervivencia Celular , Pollos , Membrana Corioalantoides/metabolismo , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/citología , Metacrilatos/química , Muramidasa/metabolismo , Porosidad , Albúmina Sérica Bovina/metabolismo , Porcinos , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
J Mater Chem B ; 6(27): 4437-4445, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32254661

RESUMEN

The combination of supportive biomaterials and bioactive factors to stimulate endogenous progenitor cells is of key interest for the treatment of conditions in which intrinsic bone healing capacities are compromised. To address this need a "scaffold-decoration platform" was developed in which a biocompatible, biotin-functionalised 3D structural polymer network was generated through a solvent blending process, and used to recruit avidin modified nanoparticles within its 3D structure through biotin-avidin conjugation. This was enabled via the generation of a suite of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, encapsulating two bioactive factors, vascular endothelial growth factor (VEGF) and l-ascorbic acid 2-phosphate (AA2P) and conjugated to streptavidin to allow attachment to the bone generating scaffold. The levels of encapsulated and released VEGF and AA2P were tailored to fall within the desired range to promote biological activity as confirmed by an increase in endothelial cell tubule formation and collagen production by osteoblast cells in response to nanoparticle release of VEGF and AA2P, respectively. The release of VEGF from the scaffolds produced a significant effect on vasculature development within the chick chorioallantoic membrane (CAM) angiogenic assay. Similarly, the scaffolds showed strong biological effects in ex vivo assays indicating the potential of this platform for localised delivery of bioactive molecules with applications in both hard and soft tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA