RESUMEN
BACKGROUND: The objective of this study was to determine the susceptibility of wild Anopheles gambiae sensu lato (s.l.) from southern Benin to the new insecticides (chlorfenapyr (CFP), pyriproxyfen (PPF), and clothianidin (CTD)) and assess the efficacy of insecticide-treated bed nets (ITNs) that contain these new products. METHODS: Wild An. gambiae from the Benin communes of Allada, Ifangni, Akpro-Missérété, and Porto-Novo were tested for their susceptibility to CFP and PPF using the WHO bottle tests, and pyrethroids (alpha-cypermethrin, deltamethrin, and permethrin) and CTD using WHO tube tests. WHO cone tests were used to evaluate the efficacy of Interceptor® (which contains alpha-cypermethrin (ACM) only), Interceptor® G2, (CFP + ACM), and Royal Guard® nets (PPF + ACM). The ovaries of blood-fed An. gambiae from Ifangni exposed to a new PPF net were dissected, and egg development status was examined using Christopher's stages to determine the fertility status of the mosquitoes. Using a standardized protocol, the oviposition rate and oviposition inhibition rate were calculated from live blood-fed An. gambiae placed in oviposition chambers after exposure to PPF. RESULTS: In all four mosquito populations, pyrethroid mortality ranged from 5 to 80%, while chlorfenapyr and clothianidin mortality ranged from 98 to 100%. At Ifangni, all mosquitoes exposed to Royal Guard® nets were infertile (100%) while the majority (74.9%) of mosquitoes exposed to Interceptor® nets had fully developed their eggs to Christopher's stage V. The oviposition inhibition rate after exposure of the mosquitoes to the PPF was 99% for the wild population of An. gambiae s.l. and the susceptible laboratory strain, An. gambiae sensu stricto (Kisumu). CONCLUSIONS: The results of this study suggest that pyrethroid-resistant An. gambiae from the selected communes in southern Benin are susceptible to chlorfenapyr, clothianidin, and pyriproxyfen. In addition, based on bioassay results, new and unused Interceptor® G2 and Royal Guard® nets were effective on Ifangni's mosquito populations. Despite the availability of new effective insecticides, continued vigilance is needed in Benin. Therefore, monitoring of resistance to these insecticides will continue to periodically update the Benin national insecticide resistance database and management plan.
Asunto(s)
Anopheles , Insecticidas , Animales , Femenino , Insecticidas/farmacología , Benin , PermetrinaRESUMEN
Burundi has experienced an increase in malaria cases since 2000, reaching 843,000 cases per million inhabitants in 2019, a more than twofold increase compared to the early 2000s. Burundi thus contrasts the decreasing number of cases in many other African countries. To evaluate the impact of malaria control on this increase, data on interventions from 2000 to 2019 were compiled. Over this period, the number of health facilities increased threefold, and the number of tests 20-fold. The test positivity rate remained stable at around 50-60% in most years. Artemisinin-based combination therapy was introduced in 2003, initially using artesunate-amodiaquine and changed to artemether-lumefantrine in 2019/2020. Mass distribution campaigns of insecticide-treated bed nets were conducted, and indoor residual spraying and intermittent preventive treatment in pregnancy introduced. Thus, the increase in cases was not the result of faltering control activities. Increased testing was likely a key contributor to higher case numbers. Despite the increase in testing, the test positivity rate remined high, indicating that current case numbers might still underestimate the true burden.
Asunto(s)
Antimaláricos/administración & dosificación , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria Falciparum/prevención & control , Burundi/epidemiología , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisiónRESUMEN
BACKGROUND: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information. METHODS: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle in 10 countries in sub-Saharan Africa using 13,639 wild-collected Anopheles gambiae sensu lato (s.l.) (56 vector populations per dose) and 4,494 pyrethroid-susceptible insectary mosquitoes from 8 colonized strains. In parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 16 countries using 23,422 wild-collected, pyrethroid-resistant An. gambiae s.l. (259 vector populations). Exposure time was 60 min, with mortality recorded at 24, 48 and 72 h after exposure. RESULTS: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72-h mortality of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 200 µg AI/bottle, respectively. Log-probit analysis of the five concentrations tested determined that the LC95 of wild An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8-119.5). The discriminating concentration of 203.8 µg AI/bottle (95% CI: 146-359) was calculated by multiplying the LC95 by three. However, the difference in mortality between 100 and 200 µg AI/bottle was minimal and large-scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 countries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h. CONCLUSIONS: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable discriminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. Testing in 16 countries in sub-Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosquitoes with multiple resistance mechanisms to pyrethroids.
Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Piretrinas/farmacología , Animales , Relación Dosis-Respuesta a DrogaRESUMEN
BACKGROUND: Long-lasting insecticidal nets (LLINs) are designed to survive and sustain their physical barrier for 3 years in household conditions. However, studies have shown that most of these nets are usually torn or no longer present in the households in less than 3 years. This study was initiated in Benin to compare the survivorship and physical integrity of seven types of LLINs in a same socio-geographic area. METHODS: In August 2017, 1890 households were selected in 9 villages in the municipality of Zagnanado in central Benin. Each one of the selected households received one of the seven LLIN products: Aspirational®, DawaPlus® 2.0, OlysetNet®, PermaNet® 2.0, PermaNet® 3.0, Royal Sentry® and Yorkool®. Overall, 270 LLINs of each type were freely distributed in Zagnanado, at a rate of 30 LLINs per type per village. These bed nets have been monitored and evaluated every 6 months to identify the most resilient and preferred LLINs in the community. Net survivorship was assessed using the rate of net loss and physical condition. RESULTS: The survivorship of all types of LLIN was estimated at 92% (95% CI 90.33-92.96) after 6 months and 70% (95% CI 67.25-71.81) after a year of use. At 12 months, all bed nets monitored were below the NetCalc model threshold of 92.8% for an LLIN with a lifespan of 3 years. Only 1.73% of all types of LLIN had a visible loss of integrity after 6 months with a median proportionate hole index (PHI) estimated at zero. The percentage significantly increased after 12 months with 10.41% of damaged nets (all types of LLINs). The median PHI for each brand of net was 23, 196, 141, 23, 23, 121 and 72, respectively for Aspirational®, DawaPlus® 2.0, OlysetNet®, PermaNet® 2.0, PermaNet® 3.0, Royal Sentry® and Yorkool®. A significant difference was noted between the PHI at 6 and 12 months (p < 0.0001). After 12 months, the DawaPlus®2.0, OlysetNet® and Royal Sentry® suffered significantly more damage compared to the others (p < 0.001). CONCLUSION: The results of this study showed that after a year of use, the survivorship of the 7 LLIN products in households was lower than expected. However, all the LLIN products successfully met WHO standards for physical integrity after 12 months of use. The monitoring continues. The next steps will help to identify the most sustainable LLINs.
Asunto(s)
Mosquiteros Tratados con Insecticida/normas , Malaria/prevención & control , Animales , Benin , Estudios de Cohortes , Composición Familiar , Educación en Salud , Humanos , Consentimiento Informado , Mosquiteros Tratados con Insecticida/clasificación , Mosquiteros Tratados con Insecticida/economía , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas , Nitrilos , Permetrina , Sinergistas de Plaguicidas , Butóxido de Piperonilo , Estudios Prospectivos , Piretrinas , Factores de TiempoRESUMEN
BACKGROUND: In 2017, more than 5 million house structures were sprayed through the U.S. President's Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa. METHODS: While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F0 Anopheles funestus s.l. tested in Mozambique and Zambia. RESULTS: One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates. CONCLUSIONS: This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance.
Asunto(s)
Anopheles/efectos de los fármacos , Guanidinas/farmacología , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Neonicotinoides/farmacología , Tiazoles/farmacología , África del Sur del Sahara , Animales , Control de Enfermedades Transmisibles , Malaria/transmisión , Valores de ReferenciaRESUMEN
BACKGROUND: Despite the success of indoor residual insecticide spraying (IRS) in Africa, particularly in Benin, some gaps of information need to be filled to optimize the effectiveness of this intervention in the perspective of the country's effort to eliminate malaria. In anticipation to the 2018 IRS campaign in two targeted regions of northern Benin, this study aimed, to collect baseline information on vector composition, spatio-temporal variation and peak malaria transmission in the Alibori and Donga, two targeted regions of northern Benin. Information collected will help to better plan the implementation and later on the impact assessment of this IRS campaign. METHODS: The study was carried out in four districts of the two IRS targeted regions of northern Benin. Human landing catches and pyrethrum spray catches protocols were used to assess the biting rate (HBR) and, biting/resting behaviour of malaria vector populations. After morphological identification of collected Anopheles, the heads and thoraxes of Anopheles gambiae sensu lato (s.l.) were analysed by the ELISA CSP tests to estimate the sporozoite index (SI). The entomological inoculation rate was calculated as the product of mosquito biting rate (HBR) and the SI. RESULTS: The biting rates of An. gambiae s.l., the major vector in this study sites, varied significantly from region to region. It was higher: in rural than in urban areas, in rainy season than in dry season, indoors than outdoors. Overall, SI was comparable between sites. The highest EIRs were observed in the Donga region (16.84 infectious bites/man/month in Djougou district and 17.64 infectious bites/man/month in Copargo district) and the lowest in the Alibori region (10.74 infectious bites/man/month at Kandi district and 11.04 infectious bites/man/month at Gogounou district). CONCLUSION: This study showed the heterogeneous and various nature of malaria epidemiology in Northern Benin. Indeed, the epidemiological profile of malaria transmission in the Alibori and Donga regions is made of a single season of transmission interrupted by a dry season. This period of transmission is relatively longer in Donga region than in Alibori. This information can be used to guide the extension of IRS in the Alibori and in the Donga, by primarily targeting areas with short periods of transmission, and easy to cover.
Asunto(s)
Anopheles , Mordeduras y Picaduras de Insectos/epidemiología , Insecticidas , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Animales , Anopheles/clasificación , Benin/epidemiología , Mordeduras y Picaduras de Insectos/prevención & control , Malaria/transmisión , Mosquitos Vectores/clasificación , PrevalenciaRESUMEN
BACKGROUND: To increase the effectiveness of insecticide-treated nets (ITN) in areas of high resistance, new long-lasting insecticidal nets (LLINs) called new-generation nets have been developed. These nets are treated with the piperonyl butoxide (PBO) synergist which inhibit the action of detoxification enzymes. The effectiveness of the new-generation nets has been proven in some studies, but their specific effect on mosquitoes carrying detoxification enzymes and those carrying both detoxification enzymes and the knock-down resistance gene in Benin is not well known. Thus, the objective of this study is to evaluate the efficacy of LLINs treated with PBO on multi-resistant Anopheles gambiae s.l. METHODS: The study occurred in seven cities in Benin, Abomey, Cotonou, Porto-Novo, Zangnanado, Parakou, Malanville and Tanguiéta, and included ten locations selected on a north-south transect. Mosquito larvae were collected from these sites, and adult females from these larvae were exposed to single-pyrethroid-treated nets (LifeNet, PermaNet 2.0, Olyset Net) and bi-treated nets (PermaNet 3.0 and Olyset Plus) based on their level of resistance and using WHO cone tests following WHO guidelines. RESULTS: The different LLINs showed 100% mortality of the susceptible laboratory strain Kisumu and the resistant strain Ace-1R Kisumu. However, with the resistant laboratory strain kdr-Kisumu, mortality was low (16-32%) for all LLINs except PermaNet 3.0 (82.9%). The mortality of local strains carrying only the kdr mechanism varied from 0 to 47% for the single-pyrethroid-treated LLINs and 9 to 86% for bi-treated LLINs. With local strains carrying several mechanisms of resistance (kdr + detoxification enzymes), the observed mortality with different LLINs was also low except for PermaNet 3.0, which induced significantly higher mortality, usually greater than 75% (p < 0.001), with multi-resistant strains. The inhibition of the mortalities induced by the LLINs (11-96%) on multi-resistant field populations was similar to the inhibition observed with the laboratory strain carrying only the knock-down resistance mechanism (kdr-Kisumu) (p > 0.05). CONCLUSION: This study showed that the new-generation LLINs treated with pyrethroids and PBO showed better efficacy compared to conventional LLINs. Although the addition of PBO significantly increased the mortality of mosquitoes, the significant role of the kdr resistance gene in the low efficacy of LLINs calls for LLIN technology innovation that specifically targets this mechanism.
Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/fisiología , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Sinergistas de Plaguicidas/farmacología , Butóxido de Piperonilo/farmacología , Animales , Benin , Bioensayo , Ciudades , Femenino , Análisis de SupervivenciaRESUMEN
BACKGROUND: An investigation carried out in Benin has shown that, in some areas close to rivers where density of mosquitoes is high, long-lasting, insecticidal bed nets (LLINs) are permanently used. In such areas, LLINs are washed every month. Based on this situation, the 20-wash minimum efficacy advised by the manufacturers would be inadequate. The main goal of this study was to evaluate the effectiveness of LifeNet®, Olyset® and Permanet® 2.0 washed several times against Anopheles gambiae sensu stricto (s.s.) populations, which have developed high resistance to pyrethroids. METHODS: Efficacy of LifeNet®, Olyset® and PermaNet® 2.0 washed 30 and 40 times was expressed in terms of blood-feeding inhibition rate, deterrence, induced exophily and mortality rates. This WHOPES phase II evaluation, conducted in experimental huts in Akron (southern Benin) and in Malanville (northern Benin), was accompanied by WHOPES Phase I evaluation. RESULTS: Over 40 successive washes, LifeNet® induced a mortality rate over 80% in phase I. However, beyond 10 washes, Permanet® 2.0 and Olyset induced dramatically reduced mortality rates, respectively 12.5 and 2.5%. With regard to Phase II results, unwashed LifeNet®, LifeNet® and Olyset® washed 30 and 40 times induced a similar exophily rate per study site (at least 58% in Malanville and at least 71% in Akron). Regarding blood feeding inhibition, LifeNet® and Olyset® washed 30 and 40 times significantly reduced wild An. gambiae s.s. blood feeding showing a similar personal protection as unwashed LifeNet®. LifeNet® washed 30 and 40 times induced mortality rates significantly higher than those induced by Olyset® and Permanet® 2.0 (P < 0,05). CONCLUSION: LifeNet®, followed by Olyset®, have shown good efficacy against host-seeking resistant An. gambiae s.s. population in experimental huts in Benin. Lifenet® have shown to be an effective and promising vector control tool to prevent malaria in areas where repeated washings is a common practice in the community.
Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/fisiología , Tareas del Hogar , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Piretrinas/farmacología , Animales , Benin , Bioensayo , Análisis de SupervivenciaRESUMEN
BACKGROUND: To better control malaria, the clear and urgent need is for improved data to inform decision makers, but in several African countries, there is a lack of baseline data on vectors and variation in the intensity of malaria transmission. This has resulted in the implementation of vector control efforts that ignore variation in vector behaviour and intensity of transmission, an approach that is most often not cost-effective. This study presents a detailed entomological description of mosquito distribution and variation in potentially transmissible contacts of Plasmodium falciparum following a south to north transect in Benin. METHOD: The study was conducted in five locations where environmental parameters were different and malaria prevalence ranged between 14 and 51%. The locations represent the main eco-epidemiological malaria areas in Benin. Mosquitoes were collected using human landing catches, pyrethrum spray catches and windows traps. They were taxonomically and molecularly identified. Head-thoraces of Anopheles gambiae s.l. were tested by enzyme-linked immunosorbent assay. Entomological indicators were estimated following WHO guidelines. RESULTS: The results showed variation between location and period in distribution of Anopheles coluzzii, An. gambiae, and Anopheles arabiensis (p < 0.05). An extension of the reported range of An. arabiensis was also observed. Densities of malaria vectors varied significantly between rural and urban sites, however, indoor/outdoor biting ratios remained constant. Proportions of malaria vectors with circumsporozoite protein of P. falciparum were similar between locations. The entomological inoculation rates ranged between zero and eight bites/man/night with significant variations between areas.Four profiles of human exposure to infectious malaria vector bites were observed and included location with one season of high transmission (June - August), two seasons of lower transmission (March-August; October-November), moderate continuous transmission season, and high continuous transmission season of P. falciparum. CONCLUSION: The study revealed several entomological patterns in transmission of P. falciparum in Benin. The data could be used for purposes of planning a more cost-effective vector control strategy, by stratifying the country into higher and lower transmission zones. The information could also be used to guide extension of indoor residual spray based on a targeted use of IRS at sites where the duration of insecticidal effect following spraying coincides with the peak transmission period.
Asunto(s)
Anopheles/fisiología , Anopheles/parasitología , Insectos Vectores , Malaria Falciparum/transmisión , Plasmodium falciparum/aislamiento & purificación , Animales , Anopheles/clasificación , Anopheles/genética , Antígenos de Protozoos/análisis , Benin/epidemiología , Ensayo de Inmunoadsorción Enzimática , Conducta Alimentaria , Humanos , Malaria Falciparum/epidemiología , Densidad de Población , PrevalenciaRESUMEN
BACKGROUND: The widespread use of insecticide-treated nets (LLINs) leads to the development of vector resistance to insecticide. This resistance can reduce the effectiveness of LLIN-based interventions and perhaps reverse progress in reducing malaria morbidity. To prevent such difficulty, it is important to know the real impact of resistance in the effectiveness of mosquito nets. Therefore, an assessment of LLIN efficacy was conducted in malaria prevention among children in high and low resistance areas. METHODS: The study was conducted in four rural districts and included 32 villages categorized as low or high resistance areas in Plateau Department, south-western Benin. Larvae collection was conducted to measure vector susceptibility to deltamethrin and knockdown resistance (kdr) frequency. In each resistance area, around 500 children were selected to measure the prevalence of malaria infection as well as the prevalence of anaemia associated with the use of LLINs. RESULTS: Observed mortalities of Anopheles gambiae s.s population exposed to deltamethrin ranged from 19 to 96%. Knockdown resistance frequency was between 38 and 84%. The prevalence of malaria infection in children under five years was 22.4% (19.9-25.1). This prevalence was 17.3% (14.2-20.9) in areas of high resistance and 27.1% (23.5-31.1) in areas of low resistance (p=0.04). Eight on ten children that were aged six - 30 months against seven on ten of those aged 31-59 months were anaemic. The anaemia observed in the six to 30-month old children was significantly higher than in the 31-59 month old children (p=0.00) but no difference associated with resistance areas was observed (p=0.35). The net use rate was 71%. The risk of having malaria was significantly reduced (p<0.05) with LLIN use in both low and high resistance areas. The preventive effect of LLINs in high resistance areas was 60% (95% CI: 40-70), and was significantly higher than that observed in low resistance areas (p<0.05). CONCLUSION: The results of this study showed that the resistance of malaria vectors seems to date not have affected the impact of LLINs and the use of LLINs was highly associated with reduced malaria prevalence irrespective of resistance.
Asunto(s)
Anemia/prevención & control , Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria Falciparum/prevención & control , Adulto , Anemia/epidemiología , Animales , Benin/epidemiología , Bioensayo , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Insecticidas/farmacología , Larva/efectos de los fármacos , Malaria Falciparum/complicaciones , Malaria Falciparum/epidemiología , Masculino , Nitrilos/farmacología , Embarazo , Prevalencia , Piretrinas/farmacología , Población Rural , Análisis de SupervivenciaRESUMEN
BACKGROUND: LLIN distribution, every three years, is a key intervention of Benin's malaria control strategy. However, data from the field indicate that LLIN lifespan appears to vary based on both intrinsic (to the LLIN) and extrinsic factors. METHODS: We monitored two indicators of LLIN durability, survivorship and integrity, to validate the three-year-serviceable-life assumption. Interviews with net owners were used to identify factors associated with loss of integrity. RESULTS: Observed survivorship, after 18 months, was significantly less (p<0.0001) than predicted, based on the assumption that nets last three years. Instead, it was closer to predicted survivorship based on a two-year LLIN serviceable life assumption (p=0.03). Furthermore, the integrity of nearly one third of 'surviving' nets was so degraded that they were in need of replacement. Five factors: washing frequency, proximity to water for washing, location of kitchen, type of cooking fuel, and low net maintenance were associated with loss of fabric integrity. CONCLUSION: A two-year serviceable life for the current LLIN intervention in Benin would be a more realistic program assumption.
Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas/administración & dosificación , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Benin , Culicidae , Falla de Equipo , Humanos , Factores de TiempoRESUMEN
BACKGROUND: This study aims to research two areas, one with a resistant and the other with a susceptible profile of An. gambiae to deltamethrin in the region of Plateau (southern Benin). In each area, eight localities were sought. Both areas were needed for the assessment of the impact of malaria vector resistance to pyrethroids on the effectiveness of Long Lasting Insecticidal Nets (LLINs). The susceptible area of An. gambiae to deltamethrin was used as a control. METHODS: In total, 119 localities in the region of Plateau were screened by sampling An. gambiae s.l larvae. Female mosquitoes resulting from these larvae were exposed to 0.05% deltamethrin following WHO standards. PCR was used to identify species and molecular forms of the dead and alive mosquitoes. Finally, we identified kdr mutations (1014 F and 1014S) using the HOLA technique. RESULTS: Fifty-six out of 119 prospected localities tested positive for Anopheles gambae s.l breeding sites. The results showed that An. gambiae was resistant to deltamethrin in 39 localities and susceptible in only 2 localities; resistance to deltamethrin was suspected in 15 localities. The HOLA technique confirmed the presence of kdr 1014 F mutation and the absence of kdr 1014S mutation. The kdr 1014 F mutation was found in both M and S molecular forms at relatively high frequencies therefore confirming the susceptibility tests. CONCLUSION: We were unable to identify the eight susceptible areas due to the overall resistance of An. gambiae to deltamethrin in the region of Plateau. To implement the study, we kept two areas, one with high resistance (R+++) and the other with low resistance (R+) of An. gambiae to deltamethrin.
Asunto(s)
Anopheles/genética , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/efectos de los fármacos , Benin , Femenino , Resistencia a los Insecticidas/genética , Larva/efectos de los fármacos , Malaria/prevención & control , Mutación , Reacción en Cadena de la Polimerasa , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
BACKGROUND: Indoor residual spraying (IRS) was first implemented in the Atacora department, Benin from 2011 to 2012 using bendiocarb (carbamate) followed by annual spraying with pirimiphos-methyl (organophosphate) from 2013 to 2018. Before and after IRS implementation in Atacora, standard pyrethroid insecticide-treated bed nets were the main method of vector control in the area. This study investigated the knockdown resistance (kdr) gene (L1014F) and the acetylcholinesterase (ace-1) gene (G119S), before and during IRS implementation, and 4-years after IRS withdrawal from Atacora. This was done to assess how changes in insecticide pressure from indoor residual spraying may have altered the genotypic resistance profile of Anopheles gambiae s.l. METHOD: Identification of sibling species of An. gambiae s.l. and detection of the L1014F mutation in the kdr gene and G119S mutation in ace-1 genes was done using molecular analysis. Allelic and genotypic frequencies were calculated and compared with each other before and during IRS implementation and 4 years after IRS withdrawal. The Hardy-Weinberg equilibrium and genetic differentiation within and between populations were assessed. RESULTS: Prevalence of the L1014F mutation in all geographic An. gambiae s.l. (An. gambiae s.s., Anopheles. coluzzii, Anopheles. arabiensis, and hybrids of "An. gambiae s.s. and An. coluzzii") populations increased from 69% before IRS to 87% and 90% during and after IRS. The G119S allele frequency during IRS (20%) was significantly higher than before IRS implementation (2%). Four years after IRS withdrawal, allele frequencies returned to similar levels as before IRS (3%). Four years after IRS withdrawal, the populations showed excess heterozygosity at the ace-1 gene and deficit heterozygosity at the kdr gene, whereas both genes had excess heterozygosity before and during IRS (FIS < 0). No genetic differentiation was observed within the populations. CONCLUSIONS: This study shows that the withdrawal of IRS with bendiocarb and pirimiphos-methyl may have slowed down the selection of individual mosquitoes with ace-1 resistance alleles in contrast to populations of An. gambiae s.l. with the L1014F resistance allele of the kdr gene. This may suggest that withdrawing the use of carbamates or organophosphates from IRS or rotating alternative insecticides with different modes of action may slow the development of ace-1 insecticide-resistance mutations. The increase in the prevalence of the L1014F mutation of the kdr gene in the population, despite the cessation of IRS, could be explained by the growing use of pyrethroids and DDT in agriculture and for other domestic use. More observational studies in countries where carbamates or organophosphates are still being used as public health insecticides may provide additional insights into these associations.
Asunto(s)
Anopheles , Insecticidas , Fenilcarbamatos , Piretrinas , Animales , Insecticidas/farmacología , Anopheles/genética , Benin , Alelos , Acetilcolinesterasa/genética , Mosquitos Vectores/genética , Piretrinas/farmacología , Resistencia a los Insecticidas/genética , Carbamatos/farmacología , Organofosfatos/farmacología , Control de Mosquitos/métodosRESUMEN
BACKGROUND: Studies indicate that physical damage to long-lasting insecticide-treated nets (LLINs) occurs at a surprisingly rapid rate following net distribution. To what extent does such damage affect the impact of LLINs? Can vectors pass a compromised LLIN barrier to bite? Do more resistant vectors enter the insecticide-treated nets (ITNs) through holes? METHODS: The study was carried out in three geo-locations. Two types of LLINs (polyester and polyethylene) with 'standardized' physical damage were compared with similarly damaged, but non-insecticidal (control) nets. The proportionate Holes Index (pHI) of each net was 276. Mosquitoes were captured inside the nets, identified taxonomically, and subjected to molecular analysis to estimate Knock-down resistance (Kdr) frequency. RESULTS: The most commonly observed species was Anopheles gambiae, accounting for approximately 70% (1,076/1,550) of the total mosquitoes collected both in LLINs and non-insecticidal nets. When compared with controls, number of vectors captured in torn LLINs was significantly reduced. Nonetheless in a night, an average of 5 An. gambiae s.l could enter the damaged LLINs to bite. Similar numbers of resistant mosquitoes were collected in both LLINs and non-insecticidal (control) nets (p > 0.05). CONCLUSIONS: At a pHI of 276, man-vector contact was observed in torn LLINs. The insecticide at the surface of LLINs could only reduce the number of vectors. Resistant mosquitoes have opportunity to enter both non-insecticidal (control) nets and LLINs to bite.
Asunto(s)
Anopheles , Mordeduras y Picaduras de Insectos/prevención & control , Insectos Vectores , Mosquiteros Tratados con Insecticida/normas , Animales , Anopheles/clasificación , Anopheles/efectos de los fármacos , Estudios de Casos y Controles , Humanos , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacologíaRESUMEN
The present study investigated in 8 villages of the Plateau region the coverage, usage, physical integrity, and bio-efficacy of the Olyset nets distributed nationwide by the Benin's National Malaria Control Programme in July 2011. The questionnaire administered as well as the observations made in the households allowed estimating the coverage and usage rates of the 2011 Olyset nets. While their physical integrity was assessed through standard WHO methodology, their bio-efficacy was evaluated through gas chromatography, and WHO cone testing performed with the Kisumu susceptible strain. Mosquito collections through human landing catches (HLCs) were also performed in torn nets to assess if a loss of protection of sleepers occurred as the nets fabric integrity got more damaged. Nine months postdistribution, the coverage and usage rates of the 2011 Olyset nets were 67.4% (95% CI: 65.8-68.9) and 73.3% (95% CI: 70.7-75.8) respectively. About 28% of the 2011 Olyset nets were torn. A drastic drop of the insecticide quantity on the fibers of the nets [from 7.08 µg (95% CI: 5.74-8.42) to 0.2 µg (95% CI: 0.01-0.38)] as well as mortality rates <80% were observed with most nets evaluated. Moreover, the biting rates of An. gambiae s.l. (Diptera: Culicidae) inside torn nets increased in line with their fabric integrity loss. These data support the conclusion that future deployment of nets in the field must be strengthened by community sensitization on their correct use in order to postpone as much as possible appearance of holes and loss of insecticidal activity and encourage repairing of torn nets.
Asunto(s)
Anopheles/efectos de los fármacos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Control de Mosquitos/métodos , Animales , Benin , Humanos , Insecticidas/administración & dosificación , Insecticidas/farmacología , Malaria/prevención & control , Permetrina/administración & dosificación , Permetrina/farmacología , Encuestas y Cuestionarios , TextilesRESUMEN
BACKGROUND: Progress made in the control of malaria vectors globally is largely due to the use of insecticides. However, success in the fight against malaria has slowed down or even stalled due to a host of factors including insecticide resistance. The greatest burden of the disease is felt in Africa, particularly Nigeria. Unfortunately, adequate information on insecticide resistance is lacking in many parts of the country, particularly the South-East Zone. Hence, this study aims to bridge the information gap in the Zone. METHODS: The study was conducted from April to December 2016. Anopheles gambiae (s.l.) larvae and pupae were collected from one community each, in the five states of the South-East Zone and reared to the adult stage. The adults were subjected to bioassays for insecticide resistance in accordance with the World Health Organization test procedures, across the four classes of insecticides used in public health. The mosquitoes were also subjected to molecular identification to the species level, and genotyped for West African knockdown resistance mutation (L1014F) and insensitive acetylcholinesterase-1 resistance mutation (G119S). RESULTS: The mosquitoes were susceptible (100%) to bendiocarb but resistant to pirimiphos-methyl (39.6%), deltamethrin (57%) and dichlorodiphenyltrichloroethane (DDT) (13%). Molecular analysis revealed that only An. gambiae (sensu stricto) was found in all the states except for Ebonyi, where only Anopheles coluzzii was present. High frequencies (0.6-0.9) of the L1014F mutation were found across the zone. The L1014F mutation was significantly higher in An. gambiae (s.s.) than in An. coluzzii (P < 0.0001). A relatively low frequency (0.2) of the G119S mutation was found in An. coluzzii, and only in Ebonyi State. CONCLUSION: The results show that mosquitoes collected from the South-East Zone of Nigeria were resistant to all insecticides used, except for bendiocarb. The presence of L1014F and G119S resistance mutations reported in this study calls for urgent attention to stop the growing threat of insecticide resistance in the country.
Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a los Insecticidas/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Acetilcolinesterasa/genética , Animales , DDT , Femenino , Técnicas de Silenciamiento del Gen , Larva/efectos de los fármacos , Malaria , Mosquitos Vectores/genética , Mutación , Nigeria , Nitrilos , Compuestos Organotiofosforados/farmacología , Fenilcarbamatos/farmacología , Pupa/efectos de los fármacos , Piretrinas , Organización Mundial de la SaludRESUMEN
Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS) in semi-field conditions and long lasting insecticidal nets (LLINs) in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46%) but high for other predominant species such as Mansonia africana (93% to 97%). There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001). Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible "Kisumu", mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted.
Asunto(s)
Anopheles/efectos de los fármacos , Repelentes de Insectos/toxicidad , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Piretrinas/toxicidad , Animales , Anopheles/genética , Benin , Femenino , Repelentes de Insectos/administración & dosificación , Malaria/transmisión , Piretrinas/administración & dosificaciónRESUMEN
BACKGROUND: Insecticides are widely used to control malaria vectors and have significantly contributed to the reduction of malaria-caused mortality. In addition, the same classes of insecticides were widely introduced and used in agriculture in Benin since 1980s. These factors probably contributed to the selection of insecticide resistance in malaria vector populations reported in several localities in Benin. This insecticide resistance represents a threat to vector control tool and should be monitored. The present study reveals observed insecticide resistance trends in Benin to help for a better management of insecticide resistance. METHODS: Mosquito larvae were collected in eight sites and reared in laboratory. Bioassays were conducted on the adult mosquitoes upon the four types of insecticide currently used in public health in Benin. Knock-down resistance, insensitive acetylcholinesterase-1 resistance, and metabolic resistance analysis were performed in the mosquito populations based on molecular and biochemical analysis. The data were mapped using Geographical Information Systems (GIS) with Arcgis software. RESULTS: Mortalities observed with Deltamethrin (pyrethroid class) were less than 90% in 5 locations, between 90-97% in 2 locations, and over 98% in one location. Bendiocarb (carbamate class) showed mortalities ranged 90-97% in 2 locations and were over 98% in the others locations. A complete susceptibility to Pirimiphos methyl and Fenitrothion (organophosphate class) was observed in all locations with 98-100% mortalities. Knock-down resistance frequencies were high (0.78-0.96) and similar between Anopheles coluzzii, Anopheles gambiae, Anopheles arabiensis, and Anopheles melas. Insensitive acetylcholinesterase-1 was rare (0.002-0.1) and only detected in Anopheles gambiae in concomitance with Knock-down resistance mutation. The maps showed a large distribution of Deltamethrin resistance, Knock-down mutation and metabolic resistance throughout the country, a suspected resistance to Bendiocarb and detection of insensitive acetylcholinesterase-1 from northern Benin, and a wide distribution of susceptible vectors to Pirimiphos methyl and Fenitrothion. CONCLUSION: This study showed a widespread resistance of malaria vectors to pyrethroid previously located in southern Benin, an early emergence of carbamates resistance from northern Benin and a full susceptibility to organophosphates. Several resistance mechanisms were detected in vectors with a potential cross resistance to pyrethroids through Knock-down and metabolic resistance mechanisms.
Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Benin , Bioensayo , Geografía , Larva/efectos de los fármacos , Análisis de SupervivenciaRESUMEN
BACKGROUND: Polovodova method based on counting follicular dilatations estimates the number of egg-laying in mosquitoes. However, some researchers doubt the reliability of this method because of the absence of multiple dilatations in vectors after many gonotrophic cycles. It is in this context of controversy that our study was carried out to evaluate the importance of follicular dilatations in the determination of parity levels in An. gambiae s.s. Moreover, the application of this method allowed us to clarify the evolution of vectors' infectivity to P. falciparum according to their parity level. METHODS: We used two techniques to determine the parity level in An. gambiae s.s. We used two batches of wild strain mosquitoes reproduced after a known number of egg-laying in laboratory. The first batch was submitted to oil injection in the ovaries using a micropipette. In the same way, the classic technique of ovaries dilaceration (a technique based on the Polovodova method) was applied to the second batch. In order to assess relationship between parity level and mosquitoes' infectivity, Polovodova method was applied on vectors collected on humans. Finally, Heads and thoraces of these vectors were individually analyzed for P. falciparum antigen detection using an ELISA assay. RESULTS: In the first batch including 50 female mosquitoes "never laid", 50 "laid once", 50 "laid twice" and 48 "three times", oil injection technique revealed 42 nulliparous, 44 uniparous, 46 biparous and 44 triparous respectively. Overall, Polovodova method was effective using oil injection technique (p > 0.05). On the other hand, in the second batch that has a similar number of laying to the first batch, the application of Polovodova method through classical technique of ovaries dilaceration was ineffective with multiparous females (p < 0.05). Moreover, probability of vector infectivity increased with the number of egg-laying (p < 0.0001). CONCLUSION: Our results revealed that the Polovodova method is reliable for estimating the number of egg-laying in Anopheles gambiae s.s. using oil injection technique in the ovaries. The study has also showed an increased likelihood of infectivity in vectors according to the number of egg-laying.
Asunto(s)
Anopheles/fisiología , Insectos Vectores/fisiología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Animales , Benin/epidemiología , Femenino , Geografía , Humanos , Malaria Falciparum/epidemiología , Masculino , Oviposición , Óvulo , Paridad , Reproducibilidad de los Resultados , ReproducciónRESUMEN
BACKGROUND: Following a mass distribution of long-lasting insecticidal nets (LLINs) in Benin, we used WHO guidelines to develop an assessment tool which is described in this report. It involved assessment of the three WHO indicators: survivorship, integrity and bio-efficacy. METHODS: To evaluate the assessment tool, we selected four communities, two in the Southern part of the country, and two in the North. One of the two assessment communities in each geographic setting had ready access to water and a higher reported frequency of washing LLINs. It was assumed that nets in communities with greater washing frequencies would show greater loss of durability. If the tool was sensitive enough to detect such differences, the field testing would confirm its suitability for general use in different settings in Benin. While durability indicators of survival and fabric integrity were quantified using standard WHO methodology, bio-efficacy was assessed using a 'new' alternative (to the WHO bioassay test), involving gas chromatography. Additionally, data management used current internet technology for 'real time' analysis at a central monitoring location. RESULTS: While no difference in survivorship was observed between sites with ready access to water for washing, both in the North and the South, there was a significant difference in integrity. In the South and in the North, nets from sites near water (Kessounou and Malanville) showed greater damage to integrity than did the nets from Allada and Kandi (sites far from water). As expected, LLIN integrity was significantly lower when a community was near water (p < 0.01). Bio-efficacy measurements, based on GC, were found to be so variable. CONCLUSION: A rapid decrease of the LLINs fabric integrity was observed in areas near water for washing following the first 6 months post-distribution. Due to the way that the insecticide is incorporated into the LLIN fiber and its migration to the surface, confounding results were observed with the GC analysis suggesting that the WHO bio-efficacy method may also be similarly affected. The report of other assessments could help to better understand the durability of the LLINs.