Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
New Phytol ; 189(4): 923-937, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21166808

RESUMEN

Hybrids between genetically diverse varieties display enhanced growth, and increased total biomass, stress resistance and grain yield. Gene expression and metabolic studies in maize, rice and other species suggest that protein metabolism plays a role in the growth differences between hybrids and inbreds. Single trait heterosis can be explained by the existing theories of dominance, overdominance and epistasis. General multigenic heterosis is observed in a wide variety of different species and is likely to share a common underlying biological mechanism. This review presents a model to explain differences in growth and yield caused by general multigenic heterosis. The model describes multigenic heterosis in terms of energy-use efficiency and faster cell cycle progression where hybrids have more efficient growth than inbreds because of differences in protein metabolism. The proposed model is consistent with the observed variation of gene expression in different pairs of inbred lines and hybrid offspring as well as growth differences in polyploids and aneuploids. It also suggests an approach to enhance yield gains in both hybrid and inbred crops via the creation of an appropriate computational analysis pipeline coupled to an efficient molecular breeding program.


Asunto(s)
Barajamiento de ADN , Metabolismo Energético/genética , Vigor Híbrido/genética , Modelos Biológicos , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
2.
Genetics ; 166(2): 935-45, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15020478

RESUMEN

Having diverged 50 MYA, rice remained diploid while the maize lineage became tetraploid and then fractionated by losing genes from one or the other duplicate region. We sequenced and annotated 13 maize genes (counting the duplicate gene as one gene) on one or the other of the pair of homeologous maize regions; 12 genes were present in one cluster in rice. Excellent maize-rice synteny was evident, but only after the fractionated maize regions were condensed onto a finished rice map. Excluding the gene we used to define homeologs, we found zero retention. Once retained, fractionation (loss of functioning DNA sequence) could occur within cis-acting gene space. We chose a retained duplicate basic leucine zipper transcription factor gene because it was well marked with big, exact phylogenetic footprints (CNSs). Detailed alignments of lg2 and retained duplicate lrs1 to their rice ortholog found that fractionation of conserved noncoding sequences (CNSs) was rare, as expected. Of 30 CNSs, 27 were conserved. The 3 unexpected, missing CNSs and a large insertion support subfunctionalization as a reflection of fractionation of cis-acting gene space and the recent evolution of lg2's novel maize leaf and shoot developmental functions. In general, the principles of fractionation and consolidation work well in making sense of maize gene and genomic sequence data.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Zea mays/genética , Cromosomas Artificiales Bacterianos , Evolución Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
3.
PLoS One ; 9(12): e115740, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25541944

RESUMEN

Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele-workbench. Additionally, all software is ready for immediate use from an Atmosphere Virtual Machine Image available from the iPlant Collaborative (www.iplantcollaborative.org).


Asunto(s)
Alelos , Biología Computacional/métodos , Gráficos por Computador , Perfilación de la Expresión Génica , Algoritmos , Animales , Minería de Datos , Bases de Datos Genéticas , Heterocigoto , Ratones , Polimorfismo de Nucleótido Simple , Lenguajes de Programación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia , Interfaz Usuario-Computador
4.
Curr Opin Plant Biol ; 16(2): 221-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23587937

RESUMEN

Because of the tremendous advances in functional genomics and the current availability of a large number of superior hybrids, rice is an excellent model crop system for heterosis research. Genetic dissection of yield and yield component traits of an elite rice hybrid using an ultra-high density linkage map identified overdominance as the principal genetic basis of heterosis in this hybrid. This is not an expected finding based on the reported effects of single genes. Here we propose a gene expression and protein quality control hypothesis as one possible explanation for the overdominance in hybrids bred for yield. Future studies will be directed toward the identification of the genetic and biochemical mechanisms underlying the biology of hybrid vigor.


Asunto(s)
Vigor Híbrido/genética , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Productos Agrícolas/genética
5.
Front Plant Sci ; 2: 34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22645531

RESUMEN

The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

7.
Science ; 311(5762): 815-9, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16469919

RESUMEN

Plants produce many volatile metabolites. A small subset of these compounds is sensed by animals and humans, and the volatile profiles are defining elements of the distinct flavors of individual foods. Flavor volatiles are derived from an array of nutrients, including amino acids, fatty acids, and carotenoids. In tomato, almost all of the important flavor-related volatiles are derived from essential nutrients. The predominance of volatiles derived from essential nutrients and health-promoting compounds suggests that these volatiles provide important information about the nutritional makeup of foods. Evidence supporting a relation between volatile perception and nutrient or health value will be reviewed.


Asunto(s)
Valor Nutritivo , Odorantes , Compuestos Orgánicos/análisis , Plantas/química , Olfato , Solanum lycopersicum/química , Gusto , Aminoácidos Esenciales/análisis , Animales , Carotenoides/análisis , Señales (Psicología) , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Humanos , Solanum lycopersicum/metabolismo , Compuestos Orgánicos/metabolismo , Plantas/metabolismo , Volatilización
8.
Proc Natl Acad Sci U S A ; 99(9): 6147-51, 2002 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-11972021

RESUMEN

Control of gene expression requires cis-acting regulatory DNA sequences. Historically these sequences have been difficult to identify. Conserved noncoding sequences (CNSs) have recently been identified in mammalian genes through cross-species genomic DNA comparisons, and some have been shown to be regulatory sequences. Using sequence alignment algorithms, we compared genomic noncoding DNA sequences of the liguleless1 (lg1) genes in two grasses, maize and rice, and found several CNSs in lg1. These CNSs are present in multiple grass species that represent phylogenetically disparate lineages. Six other maize/rice genes were compared and five contained CNSs. Based on nucleotide substitution rates, these CNSs exist because they have biological functions. Our analysis suggests that grass CNSs are smaller and far less frequent than those identified in mammalian genes and that mammalian gene regulation may be more complex than that of grasses. CNSs make excellent pan-grass PCR-based genetic mapping tools. They should be useful as characters in phylogenetic studies and as monitors of gene regulatory complexity.


Asunto(s)
Oryza/genética , Zea mays/genética , Animales , Secuencia de Bases , Southern Blotting , Mapeo Cromosómico , Secuencia Conservada , Exones , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN no Traducido , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
9.
Plant Cell ; 14(2): 435-50, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11884685

RESUMEN

The Arabidopsis RPM1 gene confers resistance against Pseudomonas syringae expressing either the AvrRpm1 or the AvrB type III effector protein. We present an exhaustive genetic screen for mutants that no longer recognize avrRpm1. Using an inducible avrRpm1 expression system, we identified 110 independent mutations. These mutations represent six complementation groups. None discriminates between avrRpm1 and avrB recognition. We identified 95 rpm1 alleles and present a detailed structure--function analysis of the RPM1 protein. Several rpm1 mutants retain partial function, and we deduce that their residual activity is dependent on the level of avrRpm1 signal. In these mutants, the hypersensitive response remains activated if the signal goes above a certain threshold. Missense mutations in rpm1 are highly enriched in the nucleotide binding domain, suggesting that this region plays a key role either in the hypersensitive response associated with RPM1 activation or in RPM1 stability. Cluster analysis of rpm1 alleles defines functionally important residues that are highly conserved between nucleotide binding site leucine-rich repeat R proteins and those that are unique to RPM1. Regions of RPM1 to which no loss-of-function alleles map may represent domains in which variation is tolerated and may contribute to the evolution of new R gene specificities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Alelos , Arabidopsis/microbiología , Análisis por Conglomerados , Estradiol/farmacología , Metanosulfonato de Etilo/farmacología , Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Complementación Genética , Inmunidad Innata , Mutagénesis , Mutación Missense , Fenotipo , Proteínas de Plantas/metabolismo , Pseudomonas/patogenicidad , Virulencia
10.
Genome Res ; 13(9): 2030-41, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12952874

RESUMEN

As orthologous genes from related species diverge over time, some sequences are conserved in noncoding regions. In mammals, large phylogenetic footprints, or conserved noncoding sequences (CNSs), are known to be common features of genes. Here we present the first large-scale analysis of plant genes for CNSs. We used maize and rice, maximally diverged members of the grass family of monocots. Using a local sequence alignment set to deliver only significant alignments, we found one or more CNSs in the noncoding regions of the majority of genes studied. Grass genes have dramatically fewer and much smaller CNSs than mammalian genes. Twenty-seven percent of grass gene comparisons revealed no CNSs. Genes functioning in upstream regulatory roles, such as transcription factors, are greatly enriched for CNSs relative to genes encoding enzymes or structural proteins. Further, we show that a CNS cluster in an intron of the knotted1 homeobox gene serves as a site of negative regulation. We showthat CNSs in the adh1 gene do not correlate with known cis-acting sites. We discuss the potential meanings of CNSs and their value as analytical tools and evolutionary characters. We advance the idea that many CNSs function to lock-in gene regulatory decisions.


Asunto(s)
Secuencia Conservada/genética , Oryza/genética , Regiones no Traducidas/genética , Zea mays/genética , Región de Flanqueo 5'/genética , Animales , Sitios de Unión/genética , Biología Computacional/métodos , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes Reguladores/genética , Proteínas de Homeodominio/genética , Humanos , Intrones/genética , Familia de Multigenes/genética , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética
11.
Plant Mol Biol ; 53(3): 273-9, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14750518

RESUMEN

Yeast two-hybrid assays were used to identify rice proteins interacting with two rice cyclins and other proteins potentially involved in cell cycling. The DNA sequences encoding 119 protein fragments identified were then compared by BLAST against proteins in GenBank. The proteins found include myosin-like proteins, transcription factors, kinesins, centromere proteins and undefined proteins. Based on interactions with cyclins and other elements required for cycling, we believe the undefined proteins may be involved in associated cycling processes. The identification of proteins involved in cell cycle regulation in rice may allow for the control of agronomic traits involving plant growth or development.


Asunto(s)
Ciclo Celular/fisiología , Ciclinas/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclo Celular/genética , Ciclinas/genética , ADN Complementario/química , ADN Complementario/genética , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos
12.
Plant Physiol ; 131(3): 1313-26, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12644681

RESUMEN

We have searched the Arabidopsis and rice (Oryza sativa) genomes for homologs of LRX1, an Arabidopsis gene encoding a novel type of cell wall protein containing a leucine-rich repeat (LRR) and an extensin domain. Eleven and eight LRX (LRR/EXTENSIN) genes have been identified in these two plant species, respectively. The LRX gene family encodes proteins characterized by a short N-terminal domain, a domain with 10 LRRs, a cysteine-rich motif, and a variable C-terminal extensin-like domain. Phylogenetic analysis performed on the conserved domains indicates the existence of two major clades of LRX proteins that arose before the eudicot/monocot divergence and then diversified independently in each lineage. In Arabidopsis, gene expression studies by northern hybridization and promoter::uidA fusions showed that the two phylogenetic clades represent a specialization into "reproductive" and "vegetative" LRXs. The four Arabidopsis genes of the "reproductive" clade are specifically expressed in pollen, whereas the seven "vegetative" genes are predominantly expressed in various sporophytic tissues. This separation into two expression classes is also supported by previous studies on maize (Zea mays) and tomato (Lycopersicon esculentum) LRX homologs and by information on available rice ESTs. The strong conservation of the amino acids responsible for the putative recognition specificity of the LRR domain throughout the family suggests that the LRX proteins interact with similar ligands.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/metabolismo , Genoma de Planta , Oryza/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Repetidas Ricas en Leucina , Magnoliopsida/genética , Magnoliopsida/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reproducción/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
13.
Proc Natl Acad Sci U S A ; 100(8): 4945-50, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12684538

RESUMEN

We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.


Asunto(s)
Genes de Plantas , Oryza/genética , Proteínas 14-3-3 , Arabidopsis/genética , ADN de Plantas/genética , Expresión Génica , Datos de Secuencia Molecular , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Subunidades de Proteína , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
14.
Plant Cell ; 14(12): 2985-94, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12468722

RESUMEN

A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymmetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from approximately 100000 transformed lines. A total of 85108 TAIL-PCR products from 52964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org.


Asunto(s)
Arabidopsis/genética , ADN Bacteriano/genética , Agrobacterium tumefaciens/genética , Sitios de Unión/genética , Cromosomas de las Plantas/genética , ADN Bacteriano/química , ADN de Plantas/química , ADN de Plantas/genética , Bases de Datos Genéticas , Genoma de Planta , Internet , Mutagénesis Insercional , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa/métodos , Semillas/genética , Análisis de Secuencia de ADN
15.
Science ; 296(5565): 92-100, 2002 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-11935018

RESUMEN

The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.


Asunto(s)
Genoma de Planta , Oryza/genética , Análisis de Secuencia de ADN , Arabidopsis/genética , Mapeo Cromosómico , Cromosomas/genética , Biología Computacional , Secuencia Conservada , ADN de Plantas/genética , Bases de Datos de Ácidos Nucleicos , Grano Comestible/genética , Duplicación de Gen , Genes de Plantas , Genómica , Oryza/metabolismo , Oryza/fisiología , Proteínas de Transporte de Fosfato/genética , Enfermedades de las Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructuras de las Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Homología de Secuencia de Ácido Nucleico , Programas Informáticos , Sintenía , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA