Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 30(3): 913-928, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31298263

RESUMEN

Neural progenitor proliferation, neuronal migration, areal organization, and pioneer axon wiring are critical events during early forebrain development, yet remain incompletely understood, especially in human. Here, we studied forebrain development in human embryos aged 5 to 8 postconceptional weeks (WPC5-8), stages that correspond to the neuroepithelium/early marginal zone (WPC5), telencephalic preplate (WPC6 & 7), and incipient cortical plate (WPC8). We show that early telencephalic neurons are formed at the neuroepithelial stage; the most precocious ones originate from local telencephalic neuroepithelium and possibly from the olfactory placode. At the preplate stage, forebrain organization is quite similar in human and mouse in terms of areal organization and of differentiation of Cajal-Retzius cells, pioneer neurons, and axons. Like in mice, axons from pioneer neurons in prethalamus, ventral telencephalon, and cortical preplate cross the diencephalon-telencephalon junction and the pallial-subpallial boundary, forming scaffolds that could guide thalamic and cortical axons at later stages. In accord with this model, at the early cortical plate stage, corticofugal axons run in ventral telencephalon in close contact with scaffold neurons, which express CELSR3 and FZD3, two molecules that regulates formation of similar scaffolds in mice.


Asunto(s)
Axones/fisiología , Neuronas/fisiología , Prosencéfalo/embriología , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Edad Gestacional , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo
2.
Development ; 144(22): 4061-4077, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29138289

RESUMEN

The cerebral cortex covers the rostral part of the brain and, in higher mammals and particularly humans, plays a key role in cognition and consciousness. It is populated with neuronal cell bodies distributed in radially organized layers. Understanding the common and lineage-specific molecular mechanisms that orchestrate cortical development and evolution are key issues in neurobiology. During evolution, the cortex appeared in stem amniotes and evolved divergently in two main branches of the phylogenetic tree: the synapsids (which led to present day mammals) and the diapsids (reptiles and birds). Comparative studies in organisms that belong to those two branches have identified some common principles of cortical development and organization that are possibly inherited from stem amniotes and regulated by similar molecular mechanisms. These comparisons have also highlighted certain essential features of mammalian cortices that are absent or different in diapsids and that probably evolved after the synapsid-diapsid divergence. Chief among these is the size and multi-laminar organization of the mammalian cortex, and the propensity to increase its area by folding. Here, I review recent data on cortical neurogenesis, neuronal migration and cortical layer formation and folding in this evolutionary perspective, and highlight important unanswered questions for future investigation.


Asunto(s)
Evolución Biológica , Aves/embriología , Corteza Cerebral/embriología , Mamíferos/embriología , Reptiles/embriología , Animales , Humanos , Neurogénesis , Proteína Reelina
3.
Semin Cell Dev Biol ; 69: 102-110, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28716607

RESUMEN

Cadherin EGF LAG seven-pass G-type receptors 1, 2 and 3 (CELSR1-3) form a family of three atypical cadherins with multiple functions in epithelia and in the nervous system. During the past decade, evidence has accumulated for a key role of CELSR1 in epithelial planar cell polarity (PCP), and for CELSR2 and CELSR3 in ciliogenesis and neural development, especially neuron migration and axon guidance in the central, peripheral and enteric nervous systems. Phenotypes in mutant mice indicate that CELSR proteins work in concert with FZD3 and FZD6, but several questions remain. Apart from PCP signaling pathways implicating CELSR1 that begin to be unraveled, little is known about other signals generated by CELSR2 and CELSR3. A crucial question concerns the putative ligands that trigger signaling, in particular what is the role of WNT factors. Another critical issue is the identification of novel intracellular pathways and effectors that relay and transmit signals in receptive cells? Answers to those questions should further our understanding of the role of those important molecules not only in development but also in regeneration and disease.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Animales , Orientación del Axón , Tipificación del Cuerpo , Encéfalo/fisiología , Cadherinas/genética , Humanos , Dominios Proteicos
4.
Nat Rev Neurosci ; 14(8): 525-35, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23839596

RESUMEN

Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogaster. However, PCP has more recently emerged as an important phenomenon in vertebrates, in which it regulates various developmental processes and is associated with multiple disorders. In particular, core PCP genes are crucial for the development and function of the nervous system. They are involved in neural tube closure, ependymal polarity, neuronal migration, dendritic growth and axon guidance.


Asunto(s)
Polaridad Celular/genética , Proteínas de la Membrana/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Animales , Tipificación del Cuerpo/genética , Movimiento Celular/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Neuronas/citología , Neuronas/fisiología , Transducción de Señal/genética
5.
Dev Biol ; 419(2): 298-310, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27612405

RESUMEN

The dorsal surface of the mouse tongue is covered by ~7000 papillae, asymmetric epithelial protrusions that are precisely oriented to create a stereotyped macroscopic pattern. Within the context of this large-scale pattern, neighboring papillae exhibit a high degree of local order that minimizes the differences in their orientations. We show here that the orientations of lingual papillae are under the control of the core planar cell polarity (PCP) genes Vangl1, Vangl2, and Celsr1. Using K14-Cre and Nkx2.5-Cre to induce conditional knockout of Vangl1 and/or Vangl2 in the tongue epithelium, we observe more severe disruptions to local order among papillae with inactivation of larger numbers of Vangl genes, a greater role for Vangl2 than Vangl1, and a more severe phenotype with the Vangl2 Looptail (Lp) allele than the Vangl2 null allele, consistent with a dominant negative mode of action of the Vangl2Lp allele. Interestingly, Celsr1-/- tongues show disruption of both local and global order, with many papillae in the anterior tongue showing a reversed orientation. To quantify each of these phenotypes, we have developed and applied three procedures for sampling the orientations of papillae and assessing the degree of order on different spatial scales. The experiments reported here establish the dorsal surface of the mouse tongue as a favorable system for studying PCP control of epithelial patterning.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Portadoras/fisiología , Proteínas de la Membrana/fisiología , Ratones/anatomía & histología , Proteínas del Tejido Nervioso/fisiología , Receptores Acoplados a Proteínas G/fisiología , Lengua/anatomía & histología , Alelos , Animales , Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Eliminación de Gen , Dosificación de Gen , Técnicas de Inactivación de Genes , Estudios de Asociación Genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Modelos Biológicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fenotipo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Lengua/embriología
6.
Dev Biol ; 417(1): 40-9, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27395006

RESUMEN

The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons.


Asunto(s)
Movimiento Celular/fisiología , Nervio Facial/embriología , Neurogénesis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Rombencéfalo/embriología , Animales , Nervio Facial/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Receptores Acoplados a Proteínas G/genética
7.
Development ; 141(23): 4558-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25406397

RESUMEN

The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here, we analyzed the postnatal development of mouse oviduct and report that multilevel polarities of the oviduct are regulated by a planar cell polarity (PCP) gene, Celsr1. In the epithelium, Celsr1 is concentrated in the specific cellular boundaries perpendicular to the ovary-uterus axis from postnatal day 2. We found a new feature of cellular polarity in the oviduct - the apical surface of epithelial cells is elongated along the ovary-uterus axis. In Celsr1-deficient mice, the ciliary motion is not orchestrated along the ovary-uterus axis and the transport ability of beating cilia is impaired. Epithelial cells show less elongation and randomized orientation, and epithelial folds show randomized directionality and ectopic branches in the mutant. Our mosaic analysis suggests that the geometry of epithelial cells is primarily regulated by Celsr1 and as a consequence the epithelial folds are aligned. Taken together, we reveal the characteristics of the multilevel polarity formation processes in the mouse oviduct epithelium and suggest a novel function of the PCP pathway for proper tissue morphogenesis.


Asunto(s)
Polaridad Celular/fisiología , Células Epiteliales/fisiología , Organogénesis/fisiología , Oviductos/embriología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Bromodesoxiuridina , Polaridad Celular/genética , Forma de la Célula/fisiología , Cilios/fisiología , Cartilla de ADN/genética , Femenino , Fluorescencia , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microesferas , Oviductos/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Cereb Cortex ; 26(7): 3323-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27170656

RESUMEN

Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon-telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers.


Asunto(s)
Axones/metabolismo , Cadherinas/metabolismo , Corteza Cerebral/embriología , Receptores Frizzled/metabolismo , Receptores de Superficie Celular/metabolismo , Tálamo/embriología , Animales , Cadherinas/genética , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Receptores Frizzled/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones Transgénicos , Proyección Neuronal/fisiología , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Receptores de Superficie Celular/genética , Tálamo/citología , Tálamo/metabolismo , Técnicas de Cultivo de Tejidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(30): E3129-38, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024228

RESUMEN

In the nervous system, cilia dysfunction perturbs the circulation of the cerebrospinal fluid, thus affecting neurogenesis and brain homeostasis. A role for planar cell polarity (PCP) signaling in the orientation of cilia (rotational polarity) and ciliogenesis is established. However, whether and how PCP regulates cilia positioning in the apical domain (translational polarity) in radial progenitors and ependymal cells remain unclear. By analysis of a large panel of mutant mice, we show that two PCP signals are operating in ciliated cells. The first signal, controlled by cadherin, EGF-like, laminin G-like, seven-pass, G-type receptor (Celsr) 2, Celsr3, Frizzled3 (Fzd3) and Van Gogh like2 (Vangl2) organizes multicilia in individual cells (single-cell polarity), whereas the second signal, governed by Celsr1, Fzd3, and Vangl2, coordinates polarity between cells in both radial progenitors and ependymal cells (tissue polarity). Loss of either of these signals is associated with specific defects in the cytoskeleton. Our data reveal unreported functions of PCP and provide an integrated view of planar polarization of the brain ciliated cells.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Epéndimo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Animales , Cilios/genética , Cilios/metabolismo , Citoesqueleto/genética , Epéndimo/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
10.
Proc Natl Acad Sci U S A ; 111(29): E2996-3004, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002511

RESUMEN

Celsr3 and Fzd3, members of "core planar cell polarity" (PCP) genes, were shown previously to control forebrain axon guidance and wiring by acting in axons and/or guidepost cells. Here, we show that Celsr2 acts redundantly with Celsr3, and that their combined mutation mimics that of Fzd3. The phenotypes generated upon inactivation of Fzd3 in different forebrain compartments are similar to those in conditional Celsr2-3 mutants, indicating that Fzd3 and Celsr2-3 act in the same population of cells. Inactivation of Celsr2-3 or Fzd3 in thalamus does not affect forebrain wiring, and joint inactivation in cortex and thalamus adds little to cortical inactivation alone in terms of thalamocortical projections. On the other hand, joint inactivation perturbs strongly the formation of the barrel field, which is unaffected upon single cortical or thalamic inactivation, indicating a role for interactions between thalamic axons and cortical neurons in cortical arealization. Unexpectedly, forebrain wiring is normal in mice defective in Vangl1 and Vangl2, showing that, contrary to epithelial PCP, axon guidance can be Vangl independent in some contexts. Our results suggest that Celsr2-3 and Fzd3 regulate axonal navigation in the forebrain by using mechanisms different from classical epithelial PCP, and require interacting partners other than Vangl1-2 that remain to be identified.


Asunto(s)
Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Receptores Frizzled/metabolismo , Proteínas de la Membrana/metabolismo , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Prosencéfalo/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral/metabolismo , Silenciador del Gen , Integrasas/metabolismo , Ratones , Mutación/genética , Fenotipo , Tálamo/metabolismo
11.
Semin Cell Dev Biol ; 76: 1-2, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28988957
12.
J Neurosci ; 33(49): 19071-85, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24305805

RESUMEN

How growth cones detect small concentration differences of guidance cues for correct steering remains a long-standing puzzle. Commissural axons engage planar cell polarity (PCP) signaling components to turn anteriorly in a Wnt gradient after midline crossing. We found here that Frizzled3, a Wnt receptor, undergoes endocytosis via filopodia tips. Wnt5a increases Frizzled3 endocytosis, which correlates with filopodia elongation. We discovered an unexpected antagonism between Dishevelleds, which may function as a signal amplification mechanism in filopodia where PCP signaling is activated: Dishevelled2 blocks Dishevelled1-induced Frizzled3 hyperphosphorylation and membrane accumulation. A key component of apical-basal polarity (A-BP) signaling, aPKC, also inhibits Dishevelled1-induced Frizzled3 hyperphosphorylation. Celsr3, another PCP component, is required in commissural neurons for anterior turning. Frizzled3 hyperphosphorylation is increased in Celsr3 mutant mice, where PCP signaling is impaired, suggesting Frizzled3 hyperphosphorylation does correlate with loss of PCP signaling in vivo. Furthermore, we found that the small GTPase, Arf6, which is required for Frizzled3 endocytosis, is essential for Wnt-promoted outgrowth, highlighting the importance of Frizzled3 recycling in PCP signaling in growth cone guidance. In a Wnt5a gradient, more Frizzled3 endocytosis and activation of atypical protein kinase C was observed on the side of growth cones facing higher Wnt5a concentration, suggesting that spatially controlled Frizzled3 endocytosis is part of the key mechanism for growth cone steering.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Endocitosis/fisiología , Receptores Frizzled/fisiología , Conos de Crecimiento/fisiología , Fosfoproteínas/fisiología , Seudópodos/fisiología , Proteínas Wnt/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Avidina/metabolismo , Axones/fisiología , Biotinilación , Polaridad Celular/fisiología , Células Cultivadas , Proteínas Dishevelled , Endocitosis/genética , Femenino , Receptores Frizzled/genética , Glutatión Transferasa/metabolismo , Glicósido Hidrolasas/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Masculino , Ratones , Neuronas/fisiología , Fosfoproteínas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plásmidos/genética , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo
13.
Cereb Cortex ; 22(6): 1343-59, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21862448

RESUMEN

The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Animales Recién Nacidos , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos
14.
Proc Natl Acad Sci U S A ; 106(39): 16871-6, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19805388

RESUMEN

Apoptosis occurs widely during brain development, and p73 transcription factors are thought to play essential roles in this process. The p73 transcription factors are present in two forms, the full length TAp73 and the N-terminally truncated DeltaNp73. In cultured sympathetic neurons, overexpression of DeltaNp73 inhibits apoptosis induced by nerve growth factor withdrawal or p53 overexpression. To probe the function of DeltaNp73 in vivo, we generated a null allele and inserted sequences encoding the recombinase Cre and green fluorescent protein (EGFP). We show that DeltaNp73 is heavily expressed in the thalamic eminence (TE) that contributes neurons to ventral forebrain, in vomeronasal neurons, Cajal-Retzius cells (CRc), and choroid plexuses. In DeltaNp73(-/-) mice, cells in preoptic areas, vomeronasal neurons, GnRH-positive cells, and CRc were severely reduced in number, and choroid plexuses were atrophic. This phenotype was enhanced when DeltaNp73-positive cells were ablated by diphtheria toxin expression. However, ablation of cells that express DeltaNp73 and Wnt3a did neither remove all CRc, nor did they abolish Reelin secretion or generate a reeler-like cortical phenotype. Our data emphasize the role of DeltaNp73 in neuronal survival in vivo and in choroid plexus development, the importance of the TE as a source of neurons in ventral forebrain, and the multiple origins of CRc, with redundant production of Reelin.


Asunto(s)
Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Muerte Celular , Supervivencia Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteína Reelina , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
15.
J Neurosci ; 30(23): 7928-39, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20534841

RESUMEN

How much neocortical development depends on connections remains elusive. Here, we show that Celsr3|Dlx mutant mice have no extrinsic neocortical connections yet survive to postnatal day 20, acquire a basic behavioral repertoire, and display spontaneous hyperactivity, with abnormal light/dark activity cycling. Except for hallmarks related to thalamic input, such as barrels in somatosensory cortex, cortical arealization and laminar maturation proceeded normally. However, the tangential extension of the mature cortex was diminished, with radial thickness less severely affected. Deep layer neurons were reduced in number, and their apical and basal dendritic arbors were blunted, with reduced synapse density. Interneurons reached the cortex, and their density was comparable with wild type. The excitability of mutant pyramidal neurons, measured in vitro in patch-clamp experiments in acute slices, was decreased. However, their firing activity in vivo was quite similar to the wild type, except for the presence of rapid firing exhaustion in some mutant neurons. Local field potential and electrocorticogram showed similar range of oscillations, albeit with higher frequency peaks and reduced left-right synchrony in the mutant. Thus, "protomap" formation, namely cortical lamination and arealization, proceed normally in absence of extrinsic connections, but survival of projection neurons and acquisition of mature morphological and some electrophysiological features depend on the establishment of normal cortical-subcortical relationships.


Asunto(s)
Dendritas/fisiología , Neocórtex/crecimiento & desarrollo , Células Piramidales/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Sinapsis/fisiología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Electrofisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/fisiología , Locomoción/fisiología , Ratones , Ratones Transgénicos , Mutación , Técnicas de Placa-Clamp , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
J Neurosci ; 30(28): 9392-401, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20631168

RESUMEN

During hindbrain development, facial branchiomotor neurons (FBM neurons) migrate from medial rhombomere (r) 4 to lateral r6. In zebrafish, mutations in planar cell polarity genes celsr2 and frizzled3a block caudal migration of FBM neurons. Here, we investigated the role of cadherins Celsr1-3, and Fzd3 in FBM neuron migration in mice. In Celsr1 mutants (knock-out and Crash alleles), caudal migration was compromised and neurons often migrated rostrally into r2 and r3, as well as laterally. These phenotypes were not caused by defects in hindbrain patterning or neuronal specification. Celsr1 is expressed in FBM neuron precursors and the floor plate, but not in FBM neurons. Consistent with this, conditional inactivation showed that the function of Celsr1 in FBM neuron migration was non-cell autonomous. In Celsr2 mutants, FBM neurons initiated caudal migration but moved prematurely into lateral r4 and r5. This phenotype was enhanced by inactivation of Celsr3 in FBM neurons and mimicked by inactivation of Fzd3. Furthermore, Celsr2 was epistatic to Celsr1. These data indicate that Celsr1-3 differentially regulate FBM neuron migration. Celsr1 helps to specify the direction of FBM neuron migration, whereas Celsr2 and 3 control its ability to migrate.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular/fisiología , Neuronas/metabolismo , Rombencéfalo/metabolismo , Animales , Región Branquial/metabolismo , Cadherinas/genética , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Trazadores del Tracto Neuronal
17.
Mol Cell Biol ; 27(20): 7113-24, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17698586

RESUMEN

Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dab1 (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3beta (GSK3beta) are not. On the other hand, mTor, but not GSK3beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Dendritas/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Dendritas/ultraestructura , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Proteínas de la Matriz Extracelular/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Ratones , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteína Reelina , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
18.
Cereb Cortex ; 19 Suppl 1: i114-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19349379

RESUMEN

The development of axonal tracts requires interactions between growth cones and the environment. Major bundles, particularly in the internal capsule, are completely defective in mice with constitutive mutation of Celsr3. In order to understand better how Celsr3 controls axonal tract formation, we generated a conditional allele that allowed inactivation of Celsr3 in different sectors of the forebrain. Effects of Celsr3 inactivation specifically in the telencephalon, in the ventral forebrain, or in the cortex, demonstrate essential roles for the gene, both in the neurons that project their axons to subcerebral targets such as the spinal cord, as well as in cells that guide projecting axons through the ventral forebrain. These observations provide unequivocal in vivo evidence that heterotypic interactions between axons and guidepost cells govern axonal path formation in mammals, and that Celsr3 plays a key role in this process. In absence of cortico-subcortical connections, mice can survive up to P20, allowing studies of behavior and cortical maturation. Mutant mice with defective corticospinal tracts survive normally and provide a model to evaluate in vivo the role of this tract in motor function in rodents.


Asunto(s)
Axones/fisiología , Axones/ultraestructura , Cadherinas/metabolismo , Cápsula Interna/citología , Cápsula Interna/crecimiento & desarrollo , Animales , Cadherinas/genética , Aumento de la Célula , Ratones , Ratones Noqueados
19.
Cereb Cortex ; 19(8): 1738-50, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19008461

RESUMEN

The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is essential. Only by determining the molecular taxonomy of this diverse class of neurons can we identify the subpopulations that may contribute differentially to cortical development. We identified novel markers for murine subplate cells by comparing gene expression of subplate and layer 6 of primary visual and somatosensory cortical areas of postnatal day (P)8 old mice using a microarray-based approach. We examined the utility of these markers in well-characterized mutants (reeler, scrambler, and p35-KO) where the subplate is displaced in relation to the cortical plate. In situ hybridization or immunohistochemistry confirmed subplate-selective expression of complexin 3, connective tissue growth factor, nuclear receptor-related 1/Nr4a2, and monooxygenase Dbh-like 1 while transmembrane protein 163 also had additional expression in layer 5, and DOPA decarboxylase was also present in the white matter. Localization of marker-positive cells in the reeler and p35-KO cortices suggests different subpopulations of subplate cells. These new markers open up possibilities for further identification of subplate subpopulations in research and in neuropathological diagnosis.


Asunto(s)
Neuronas/metabolismo , Corteza Somatosensorial/metabolismo , Corteza Visual/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , Ácido gamma-Aminobutírico/metabolismo
20.
Nat Neurosci ; 8(4): 451-7, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15778712

RESUMEN

In the embryonic CNS, the development of axonal tracts is required for the formation of connections and is regulated by multiple genetic and microenvironmental factors. Here we show that mice with inactivation of Celsr3, an ortholog of Drosophila melanogaster flamingo (fmi; also known as starry night, stan) that encodes a seven-pass protocadherin, have marked, selective anomalies of several major axonal fascicles, implicating protocadherins in axonal development in the mammalian CNS for the first time. In flies, fmi controls planar cell polarity (PCP) in a frizzled-dependent but wingless-independent manner. The neural phenotype in Celsr3 mutant mice is similar to that caused by inactivation of Fzd3, a member of the frizzled family. Celsr3 and Fzd3 are expressed together during brain development and may act in synergy. Thus, a genetic pathway analogous to the one that controls PCP is key in the development of the axonal blueprint.


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/fisiología , Cadherinas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores de Superficie Celular/fisiología , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Carbocianinas/metabolismo , Clonación Molecular/métodos , Diafragma/metabolismo , Receptores Frizzled , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Mutagénesis/fisiología , Mutación/fisiología , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , ARN Mensajero/biosíntesis , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Tinción con Nitrato de Plata/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA