Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 161: 105560, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767944

RESUMEN

Emerging studies implicate energy dysregulation as an underlying trigger for Parkinson's disease (PD), suggesting that a better understanding of the molecular pathways governing energy homeostasis could help elucidate therapeutic targets for the disease. A critical cellular energy regulator is AMP kinase (AMPK), which we have previously shown to be protective in PD models. However, precisely how AMPK function impacts on dopaminergic neuronal survival and disease pathogenesis remains elusive. Here, we showed that Drosophila deficient in AMPK function exhibits PD-like features, including dopaminergic neuronal loss and climbing impairment that progress with age. We also created a tissue-specific AMPK-knockout mouse model where the catalytic subunits of AMPK are ablated in nigral dopaminergic neurons. Using this model, we demonstrated that loss of AMPK function promotes dopaminergic neurodegeneration and associated locomotor aberrations. Accompanying this is an apparent reduction in the number of mitochondria in the surviving AMPK-deficient nigral dopaminergic neurons, suggesting that an impairment in mitochondrial biogenesis may underlie the observed PD-associated phenotypes. Importantly, the loss of AMPK function enhances the susceptibility of nigral dopaminergic neurons in these mice to 6-hydroxydopamine-induced toxicity. Notably, we also found that AMPK activation is reduced in post-mortem PD brain samples. Taken together, these findings highlight the importance of neuronal energy homeostasis by AMPK in PD and position AMPK pathway as an attractive target for future therapeutic exploitation.


Asunto(s)
Adenilato Quinasa , Neuronas Dopaminérgicas , Enfermedad de Parkinson , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Ratones , Enfermedad de Parkinson/metabolismo , Fenotipo , Sustancia Negra/metabolismo
2.
Neuromolecular Med ; 21(1): 25-32, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30411223

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder that is characterized pathologically by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD remains poorly understood. Interestingly, recent studies have implicated neuronal energy dysregulation as one of the key perpetrators of the disease. Supporting this, we have recently demonstrated that pharmacological or genetic activation of AMP kinase (AMPK), a master regulator of cellular energy homeostasis, rescues the pathological phenotypes of Drosophila models of PD. However, little is known about the role of AMPK in the mammalian brain. As an initial attempt to clarify this, we examined the expression of AMPK in rodent brains and found that phospho-AMPK (pAMPK) is disproportionately distributed in the adult mouse brain, being high in the ventral midbrain where the SN resides and relatively lower in regions such as the cortex-reflecting perhaps the unique energy demands of midbrain DA neurons. Importantly, the physiologically higher level of midbrain pAMPK is significantly reduced in aged mice and also in Parkin-deficient mice; the loss of function of which in humans causes recessive Parkinsonism. Not surprisingly, the expression of PGC-1α, a downstream target of AMPK activity, and a key regulator of mitochondrial biogenesis, mirrors the expression pattern of pAMPK. Similar observations were made with PINK1-deficient mice. Finally, we showed that metformin administration restores the level of midbrain pAMPK and PGC-1α expression in Parkin-deficient mice. Taken together, our results suggest that the disruption of AMPK-PGC-1α axis in the brains of individuals with Parkin or PINK1 mutations may be a precipitating factor of PD, and that pharmacological AMPK activation may represent a neuroprotective strategy for the disease.


Asunto(s)
Adenilato Quinasa/metabolismo , Mesencéfalo/enzimología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Asociadas a la Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia , Envejecimiento/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Evaluación Preclínica de Medicamentos , Metabolismo Energético , Activación Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Proteínas Asociadas a la Enfermedad de Parkinson/deficiencia , Proteínas Asociadas a la Enfermedad de Parkinson/genética , Porción Compacta de la Sustancia Negra/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fosforilación , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA