Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 96(4): 675-81, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25817015

RESUMEN

Mutations in genes encoding aminoacyl-tRNA synthetases are known to cause leukodystrophies and genetic leukoencephalopathies-heritable disorders that result in white matter abnormalities in the central nervous system. Here we report three individuals (two siblings and an unrelated individual) with severe infantile epileptic encephalopathy, clubfoot, absent deep tendon reflexes, extrapyramidal symptoms, and persistently deficient myelination on MRI. Analysis by whole exome sequencing identified mutations in the nuclear-encoded alanyl-tRNA synthetase (AARS) in these two unrelated families: the two affected siblings are compound heterozygous for p.Lys81Thr and p.Arg751Gly AARS, and the single affected child is homozygous for p.Arg751Gly AARS. The two identified mutations were found to result in a significant reduction in function. Mutations in AARS were previously associated with an autosomal-dominant inherited form of axonal neuropathy, Charcot-Marie-Tooth disease type 2N (CMT2N). The autosomal-recessive AARS mutations identified in the individuals described here, however, cause a severe infantile epileptic encephalopathy with a central myelin defect and peripheral neuropathy, demonstrating that defects of alanyl-tRNA charging can result in a wide spectrum of disease manifestations.


Asunto(s)
Anomalías Múltiples/genética , Alanina-ARNt Ligasa/genética , Epilepsia/genética , Modelos Moleculares , Vaina de Mielina/patología , Enfermedades del Sistema Nervioso Periférico/genética , Fenotipo , Anomalías Múltiples/patología , Alanina-ARNt Ligasa/química , Secuencia de Aminoácidos , Secuencia de Bases , Epilepsia/patología , Genes Recesivos/genética , Humanos , Lactante , Recién Nacido , Datos de Secuencia Molecular , Mutación/genética , Enfermedades del Sistema Nervioso Periférico/patología , Estudios Prospectivos , Análisis de Secuencia de ADN , Síndrome , Estados Unidos
2.
Mol Ther ; 25(4): 892-903, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28236574

RESUMEN

GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.


Asunto(s)
Biomarcadores , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , Terapia Genética , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Gatos , Dependovirus/clasificación , Dependovirus/genética , Modelos Animales de Enfermedad , Electroencefalografía , Gangliosidosis GM1/mortalidad , Gangliosidosis GM1/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Hipocalcemia/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Resultado del Tratamiento
3.
Hum Mutat ; 38(10): 1412-1420, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28675565

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Discapacidades del Desarrollo/genética , Genes Recesivos , Glicina-ARNt Ligasa/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Citoplasma/enzimología , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/fisiopatología , Femenino , Variación Genética , Humanos , Mitocondrias/enzimología , Secuenciación del Exoma
4.
Hum Mol Genet ; 23(2): 397-407, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24006476

RESUMEN

Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , GTP Fosfohidrolasas/genética , Hipofosfatemia/genética , Proteínas de la Membrana/genética , Nevo Pigmentado/genética , Osteomalacia/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Cutáneas/genética , Adolescente , Niño , Exoma , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipofosfatemia/sangre , Hipofosfatemia/patología , Masculino , Mutación , Nevo , Nevo Pigmentado/sangre , Nevo Pigmentado/patología , Osteomalacia/sangre , Osteomalacia/patología , Análisis de Secuencia de ADN , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/patología
5.
Genet Med ; 18(6): 608-17, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26562225

RESUMEN

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608-617.


Asunto(s)
Secuenciación del Exoma/métodos , Exoma/genética , Enfermedades Raras/genética , Enfermedades Raras/fisiopatología , Animales , Biología Computacional , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Variación Genética , Humanos , Ratones , National Institutes of Health (U.S.) , Pacientes , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Estados Unidos , Pez Cebra
6.
Am J Med Genet A ; 170A(1): 103-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26373698

RESUMEN

The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with bi-allelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients had mildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS.


Asunto(s)
Enfermedades del Tejido Conjuntivo/patología , Dermis/patología , Síndrome de Ehlers-Danlos/patología , Fibroblastos/patología , Mutación/genética , Sulfotransferasas/genética , Adolescente , Adulto , Niño , Preescolar , Enfermedades del Tejido Conjuntivo/genética , Dermis/metabolismo , Síndrome de Ehlers-Danlos/genética , Femenino , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Am J Med Genet A ; 170(3): 634-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26646981

RESUMEN

Background GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in GLB1, encoding ß-galactosidase. The range of severity is from type I infantile disease, lethal in early childhood, to type III adult onset, resulting in gradually progressive neurological symptoms in adulthood. The intermediate group of patients has been recently classified as having type II late infantile subtype with onset of symptoms at one to three years of age or type II juvenile subtype with symptom onset at 2-10 years. To characterize disease severity and progression, six Late infantile and nine juvenile patients were evaluated using magnetic resonance imaging (MRI), and MR spectroscopy (MRS). Since difficulties with ambulation (gross motor function) and speech (expressive language) are often the first reported symptoms in type II GM1, patients were also scored in these domains. Deterioration of expressive language and ambulation was more rapid in the late infantile patients. Fourteen MRI scans in six Late infantile patients identified progressive atrophy in the cerebrum and cerebellum. Twenty-six MRI scans in nine juvenile patients revealed greater variability in extent and progression of atrophy. Quantitative MRS demonstrated a deficit of N-acetylaspartate in both the late infantile and juvenile patients with greater in the late infantile patients. This correlates with clinical measures of ambulation and expressive language. The two subtypes of type II GM1 gangliosidosis have different clinical trajectories. MRI scoring, quantitative MRS and brain volume correlate with clinical disease progression and may serve as important minimally-invasive outcome measures for clinical trials.


Asunto(s)
Atrofia/diagnóstico , Gangliosidosis GM1/diagnóstico , Trastornos del Habla/diagnóstico , beta-Galactosidasa/genética , Adolescente , Edad de Inicio , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Atrofia/genética , Atrofia/metabolismo , Atrofia/patología , Cerebelo/metabolismo , Cerebelo/patología , Cerebro/metabolismo , Cerebro/patología , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , Gangliosidosis GM1/patología , Expresión Génica , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Limitación de la Movilidad , Índice de Severidad de la Enfermedad , Habla , Trastornos del Habla/genética , Trastornos del Habla/metabolismo , Trastornos del Habla/patología , Adulto Joven , beta-Galactosidasa/deficiencia
8.
Eur J Pediatr ; 175(5): 727-33, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26795631

RESUMEN

UNLABELLED: X-linked nephrogenic diabetes insipidus (NDI, OMIM#304800) is caused by mutations in the arginine vasopressin (AVP, OMIM*192340) receptor type 2 (AVPR2, OMIM*300538) gene. A 20-month-old boy and his 8-year-old brother presented with polyuria, polydipsia, and failure to thrive. Both boys demonstrated partial DDAVP (1-desamino-8-D AVP or desmopressin) responses; thus, NDI diagnosis was delayed. While routine sequencing of AVPR2 showed a potential splice site variant, it was not until exome sequencing confirmed the AVPR2 splice site variant and did not reveal any more likely candidates that the patients' diagnosis was made and proper treatment was instituted. Both patients were hemizygous for two AVPR2 variants predicted in silico to affect AVPR2 messenger RNA (mRNA) splicing. A minigene assay revealed that the novel AVPR2 c.276A>G mutation creates a novel splice acceptor site leading to 5' truncation of AVPR2 exon 2 in HEK293 human kidney cells. Both patients have been treated with high-dose DDAVP with a remarkable improvement of their symptoms and accelerated linear growth and weight gain. CONCLUSION: We present here a unique case of partial X-linked NDI due to an AVPR2 splice site mutation; patients with diabetes insipidus of unknown etiology may harbor splice site mutations that are initially underestimated in their pathogenicity on sequence analysis. WHAT IS KNOWN: • X-linked nephrogenic diabetes insipidus is caused by AVPR2 mutations, and disease severity can vary depending on the functional effect of the mutation. What is New: • We demonstrate here that a splice site mutation in AVPR2 leads to partial X-linked NDI in two brothers. • Treatment with high-dose DDAVP led to improvement of polyuria and polydipsia, weight gain, and growth.


Asunto(s)
Diabetes Insípida Nefrogénica/genética , Mutación , Sitios de Empalme de ARN/genética , Receptores de Vasopresinas/genética , Hermanos , Niño , Análisis Mutacional de ADN , Diabetes Insípida Nefrogénica/metabolismo , Humanos , Lactante , Masculino , Linaje , Receptores de Vasopresinas/metabolismo
9.
Mol Genet Metab ; 115(2-3): 128-140, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25943031

RESUMEN

PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.


Asunto(s)
Aciltransferasas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Niño , Discapacidades del Desarrollo/metabolismo , Fibroblastos , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Hipotonía Muscular/metabolismo , Mutación Missense , Piel/citología
10.
Am J Med Genet A ; 167(6): 1374-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25845469

RESUMEN

Intellectual disability (ID) is a heterogeneous condition arising from a variety of environmental and genetic factors. Among these causes are defects in transcriptional regulators. Herein, we report on two brothers in a nonconsanguineous family with novel compound heterozygous, disease-segregating mutations (NM_015979.3: [3656A > G];[4006C > T], NP_057063.2: [H1219R];[R1336X]) in MED23. This gene encodes a subunit of the Mediator complex that modulates the expression of RNA polymerase II-dependent genes. These brothers, who had profound ID, spasticity, congenital heart disease, brain abnormalities, and atypical electroencephalography, represent the first case of MED23-associated ID in a non-consanguineous family. They also expand upon the clinical features previously reported for mutations in this gene.


Asunto(s)
Anomalías Múltiples/genética , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Complejo Mediador/genética , Mutación Missense , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Niño , Preescolar , Exoma , Expresión Génica , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/patología , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Hermanos
11.
N Engl J Med ; 365(7): 611-9, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21793738

RESUMEN

BACKGROUND: The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS: We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylation-specific antibodies on Western blots. RESULTS: Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G→A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation. CONCLUSIONS: The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K-AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.).


Asunto(s)
Mosaicismo , Mutación , Síndrome de Proteo/genética , Proteínas Proto-Oncogénicas c-akt/genética , Niño , Análisis Mutacional de ADN , Exones/genética , Genotipo , Humanos , Masculino , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Genet Med ; 16(10): 741-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24784157

RESUMEN

PURPOSE: Using exome sequence data from 159 families participating in the National Institutes of Health Undiagnosed Diseases Program, we evaluated the number and inheritance mode of reportable incidental sequence variants. METHODS: Following the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings from next-generation sequencing, we extracted variants in 56 genes from the exome sequence data of 543 subjects and determined the reportable incidental findings for each participant. We also defined variant status as inherited or de novo for those with available parental sequence data. RESULTS: We identified 14 independent reportable variants in 159 (8.8%) families. For nine families with parental sequence data in our cohort, a parent transmitted the variant to one or more children (nine minor children and four adult children). The remaining five variants occurred in adults for whom parental sequences were unavailable. CONCLUSION: Our results are consistent with the expectation that a small percentage of exomes will result in identification of an incidental finding under the American College of Medical Genetics and Genomics recommendations. Additionally, our analysis of family sequence data highlights that genome and exome sequencing of families has unavoidable implications for immediate family members and therefore requires appropriate counseling for the family.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Niño , Estudios de Cohortes , Salud de la Familia , Femenino , Asesoramiento Genético , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genoma Humano/genética , Humanos , Hallazgos Incidentales , Masculino , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Persona de Mediana Edad , National Institutes of Health (U.S.) , Estados Unidos , Adulto Joven
13.
Mol Genet Metab ; 113(3): 161-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24863970

RESUMEN

The National Institutes of Health Undiagnosed Diseases Program evaluates patients for whom no diagnosis has been discovered despite a comprehensive diagnostic workup. Failure to diagnose a condition may arise from the mutation of genes previously unassociated with disease. However, we hypothesized that this could also co-occur with multiple genetic disorders. Demonstrating a complex syndrome caused by multiple disorders, we report two siblings manifesting both similar and disparate signs and symptoms. They shared a history of episodes of hypoglycemia and lactic acidosis, but had differing exam findings and developmental courses. Clinical acumen and exome sequencing combined with biochemical and functional studies identified three genetic conditions. One sibling had Smith-Magenis Syndrome and a nonsense mutation in the RAI1 gene. The second sibling had a de novo mutation in GRIN2B, which resulted in markedly reduced glutamate potency of the encoded receptor. Both siblings had a protein-destabilizing homozygous mutation in PCK1, which encodes the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). In summary, we present the first clinically-characterized mutation of PCK1 and demonstrate that complex medical disorders can represent the co-occurrence of multiple diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/deficiencia , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Smith-Magenis/diagnóstico , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación Missense , Polimorfismo de Nucleótido Simple , Síndrome de Smith-Magenis/genética , Transactivadores
14.
PLoS Genet ; 7(10): e1002325, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022284

RESUMEN

We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C) gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C) complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.


Asunto(s)
Proteasas ATP-Dependientes/genética , Encéfalo/anomalías , Metaloendopeptidasas/genética , Mitocondrias/enzimología , Paraplejía Espástica Hereditaria/genética , Degeneraciones Espinocerebelosas/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adolescente , Secuencia de Aminoácidos , Animales , Encéfalo/patología , Niño , Diagnóstico Diferencial , Exoma/genética , Genotipo , Células HeLa , Homocigoto , Humanos , Masculino , Metaloendopeptidasas/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación Missense , Paraplejía , Pliegue de Proteína , Hermanos , Paraplejía Espástica Hereditaria/patología , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas/patología , Levaduras/genética
15.
Mol Med ; 18: 56-64, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22009278

RESUMEN

Pulmonary fibrosis develops in Hermansky-Pudlak syndrome (HPS) types 1 and 4. Limited information is available about lung disease in HPS type 2 (HPS-2), which is characterized by abnormal function of the adaptor protein-3 (AP-3) complex. To define lung disease in HPS-2, one child and two adults with HPS-2 were evaluated at the National Institutes of Health on at least two visits, and another child was evaluated at the University of Texas Health Science Center San Antonio. All four subjects with HPS-2 had findings of interstitial lung disease (ILD) on a high-resolution computed tomography scan of the chest. The predominant feature was ground glass opacification. Subject 1, a 14-year-old male, and subject 4, a 4-year-old male, had severe ILD, pulmonary fibrosis, secondary pulmonary hypertension and recurrent lung infections. Lung biopsy performed at 20 months of age in subject 1 revealed interstitial fibrosis and prominent type II pneumocyte hyperplasia without lamellar body enlargement. Subject 2, a 27-year-old male smoker, had mild ILD. Subject 3, a 22-year-old male nonsmoker and brother of subject 2, had minimal ILD. Severe impairment of gas exchange was found in subjects 1 and 4 and not in subjects 2 or 3. Plasma concentrations of transforming growth factor-ß1 and interleukin-17A correlated with severity of HPS-2 ILD. These data show that children and young adults with HPS-2 and functional defects of the AP-3 complex are at risk for ILD and pulmonary fibrosis.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/fisiopatología , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/metabolismo , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/metabolismo , Complejo 3 de Proteína Adaptadora/genética , Adolescente , Adulto , Síndrome de Hermanski-Pudlak/genética , Humanos , Enfermedades Pulmonares Intersticiales/genética , Masculino , Fibrosis Pulmonar/genética , Adulto Joven
16.
Genet Med ; 14(1): 51-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22237431

RESUMEN

PURPOSE: This report describes the National Institutes of Health Undiagnosed Diseases Program, details the Program's application of genomic technology to establish diagnoses, and details the Program's success rate during its first 2 years. METHODS: Each accepted study participant was extensively phenotyped. A subset of participants and selected family members (29 patients and 78 unaffected family members) was subjected to an integrated set of genomic analyses including high-density single-nucleotide polymorphism arrays and whole exome or genome analysis. RESULTS: Of 1,191 medical records reviewed, 326 patients were accepted and 160 were admitted directly to the National Institutes of Health Clinical Center on the Undiagnosed Diseases Program service. Of those, 47% were children, 55% were females, and 53% had neurologic disorders. Diagnoses were reached on 39 participants (24%) on clinical, biochemical, pathologic, or molecular grounds; 21 diagnoses involved rare or ultra-rare diseases. Three disorders were diagnosed based on single-nucleotide polymorphism array analysis and three others using whole exome sequencing and filtering of variants. Two new disorders were discovered. Analysis of the single-nucleotide polymorphism array study cohort revealed that large stretches of homozygosity were more common in affected participants relative to controls. CONCLUSION: The National Institutes of Health Undiagnosed Diseases Program addresses an unmet need, i.e., the diagnosis of patients with complex, multisystem disorders. It may serve as a model for the clinical application of emerging genomic technologies and is providing insights into the characteristics of diseases that remain undiagnosed after extensive clinical workup.


Asunto(s)
Programas de Gobierno , Programas Nacionales de Salud , National Institutes of Health (U.S.) , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Investigación Biomédica , Niño , Preescolar , Protocolos Clínicos , Variaciones en el Número de Copia de ADN , Exoma , Femenino , Homocigoto , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Enfermedades Raras/mortalidad , Estados Unidos , Adulto Joven
17.
Am J Med Genet A ; 152A(6): 1474-83, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20503323

RESUMEN

Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disease characterized by variable oculocutaneous albinism, immunodeficiency, mild bleeding diathesis, and an accelerated lymphoproliferative state. Abnormal lysosome-related organelle membrane function leads to the accumulation of large intracellular vesicles in several cell types, including granulocytes, melanocytes, and platelets. This report describes a severe case of CHS resulting from paternal heterodisomy of chromosome 1, causing homozygosity for the most distal nonsense mutation (p.E3668X, exon 50) reported to date in the LYST/CHS1 gene. The mutation is located in the WD40 region of the CHS1 protein. The patient's fibroblasts expressed no detectable CHS1. Besides manifesting the classical CHS findings, the patient exhibited hypotonia and global developmental delays, raising concerns about other effects of heterodisomy. An interstitial 747 kb duplication on 6q14.2-6q14.3 was identified in the propositus and paternal samples by comparative genomic hybridization. SNP genotyping revealed no additional whole chromosome or segmental isodisomic regions or other dosage variations near the crossover breakpoints on chromosome 1. Unmasking of a separate autosomal recessive cause of developmental delay, or an additive effect of the paternal heterodisomy, could underlie the severity of the phenotype in this patient.


Asunto(s)
Aneuploidia , Síndrome de Chediak-Higashi/genética , Cromosomas Humanos Par 1/genética , Síndrome de Chediak-Higashi/patología , Codón sin Sentido , Exones/genética , Fibroblastos/patología , Humanos , Lactante , Lisosomas/patología , Retina/patología , Análisis de Secuencia de ADN
18.
Mol Genet Metab ; 97(3): 227-33, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19398212

RESUMEN

Hermansky-Pudlak syndrome (HPS) develops from defects in the biogenesis and/or function of lysosome-related organelles essential to membrane and protein trafficking. Of the eight known human subtypes, only HPS-1 and HPS-4 develop pulmonary fibrosis in addition to the general clinical manifestations of oculocutaneous albinism and bleeding diathesis. We identified HPS-1 in three unrelated patients from different regions of India, who presented with iris transillumination, pale fundi, hypopigmentation, nystagmus, decreased visual acuity, and a bleeding diathesis. Two of these patients carried the homozygous mutation c.398+5G>A (IVS5+5G>A) in HPS1, resulting in skipping of exon 5 in HPS1 mRNA. The third patient carried a novel homozygous c.988-1G>T mutation that resulted in in-frame skipping of HPS1 exon 12 and removes 56 amino acids from the HPS1 protein. Given the discovery of HPS-1 in an ethnic group where oculocutaneous albinism (OCA) is highly prevalent, it is possible that HPS in India is under-diagnosed. We recommend that unconfirmed OCA patients in this ethic group be considered for mutational screening of known HPS genes, in particular c.398+5G>A and c.980-1G>T, to ensure that patients can be monitored and treated for clinical complications unique to HPS.


Asunto(s)
Pueblo Asiatico/genética , Síndrome de Hermanski-Pudlak/genética , Secuencia de Bases , Plaquetas/ultraestructura , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , India , Lactante , Masculino , Proteínas de la Membrana/genética , Datos de Secuencia Molecular
19.
Cilia ; 6: 2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344780

RESUMEN

BACKGROUND: The discovery of disease pathogenesis requires systematic agnostic screening of multiple homeostatic processes that may become deregulated. We illustrate this principle in the evaluation and diagnosis of a 5-year-old boy with Joubert syndrome type 10 (JBTS10). He carried the OFD1 mutation p.Gln886Lysfs*2 (NM_003611.2: c.2656del) and manifested features of Joubert syndrome. METHODS: We integrated exome sequencing, MALDI-TOF mass spectrometry analyses of plasma and cultured dermal fibroblasts glycomes, and full clinical evaluation of the proband. Analyses of cilia formation and lectin staining were performed by immunofluorescence. Measurement of cellular nucleotide sugar levels was performed with high-performance anion-exchange chromatography with pulsed amperometric detection. Statistical analyses utilized the Student's and Fisher's exact t tests. RESULTS: Glycome analyses of plasma and cultured dermal fibroblasts identified abnormal N- and O-linked glycosylation profiles. These findings replicated in two unrelated males with OFD1 mutations. Cultured fibroblasts from affected individuals had a defect in ciliogenesis. The proband's fibroblasts also had an abnormally elevated nuclear sialylation signature and increased total cellular levels of CMP-sialic acid. Ciliogenesis and each glycosylation anomaly were rescued by expression of wild-type OFD1. CONCLUSIONS: The rescue of ciliogenesis and glycosylation upon reintroduction of WT OFD1 suggests that both contribute to the pathogenesis of JBTS10.

20.
Neurology ; 88(7): e57-e65, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28193763

RESUMEN

OBJECTIVE: To delineate the developmental and progressive neurodegenerative features in 9 young adults with the atypical form of Chediak-Higashi disease (CHD) enrolled in a natural history study. METHODS: Patients with atypical clinical features, but diagnostically confirmed CHD by standard evaluation of blood smears and molecular genotyping, underwent complete neurologic evaluation, MRI of the brain, electrophysiologic examination, and neuropsychological testing. Fibroblasts were collected to investigate the cellular phenotype and correlation with the clinical presentation. RESULTS: In 9 mildly affected patients with CHD, we documented learning and behavioral difficulties along with developmental structural abnormalities of the cerebellum and posterior fossa, which are apparent early in childhood. A range of progressive neurologic problems emerge in early adulthood, including cerebellar deficits, polyneuropathies, spasticity, cognitive decline, and parkinsonism. CONCLUSIONS: Patients with undiagnosed atypical CHD manifesting some of these wide-ranging yet nonspecific neurologic complaints may reside in general and specialty neurology clinics. The absence of the typical bleeding or infectious diathesis in mildly affected patients with CHD renders them difficult to diagnose. Identification of these individuals is important not only for close surveillance of potential CHD-related systemic complications but also for a full understanding of the natural history of CHD and the potential role of the disease-causing protein, LYST, to the pathophysiology of other neurodevelopmental and neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA