Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(4): 214, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347434

RESUMEN

Plasmalogens are an abundant class of glycerophospholipids in the mammalian body, with special occurrence in the brain and in immune cell membranes. Plasmanylethanolamine desaturase (PEDS1) is the final enzyme of plasmalogen biosynthesis, which introduces the characteristic 1-O-alk-1'-enyl double bond. The recent sequence identification of PEDS1 as transmembrane protein 189 showed that its protein sequence is related to a special class of plant desaturases (FAD4), with whom it shares a motif of 8 conserved histidines, which are essential for the enzymatic activity. In the present work, we wanted to gain more insight into the sequence-function relationship of this enzyme and mutated to alanine additional 28 amino acid residues of murine plasmanylethanolamine desaturase including those 20 residues, which are also totally conserved-in addition to the eight-histidine-motif-among the animal PEDS1 and plant FAD4 plant desaturases. We measured the enzymatic activity by transient transfection of tagged murine PEDS1 expression clones to a PEDS1-deficient human HAP1 cell line by monitoring of labeled plasmalogens formed from supplemented 1-O-pyrenedecyl-sn-glycerol in relation to recombinant protein expression. Surprisingly, only a single mutation, namely aspartate 100, led to a total loss of PEDS1 activity. The second strongest impact on enzymatic activity had mutation of phenylalanine 118, leaving only 6% residual activity. A structural model obtained by homology modelling to available structures of stearoyl-CoA reductase predicted that this aspartate 100 residue interacts with histidine 96, and phenylalanine 118 interacts with histidine 187, both being essential histidines assumed to be involved in the coordination of the di-metal center of the enzyme.


Asunto(s)
Ácido Aspártico , Oxidorreductasas , Secuencia de Aminoácidos , Animales , Humanos , Mamíferos/metabolismo , Ratones , Oxidorreductasas/metabolismo , Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(14): 7792-7798, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209662

RESUMEN

A significant fraction of the glycerophospholipids in the human body is composed of plasmalogens, particularly in the brain, cardiac, and immune cell membranes. A decline in these lipids has been observed in such diseases as Alzheimer's and chronic obstructive pulmonary disease. Plasmalogens contain a characteristic 1-O-alk-1'-enyl ether (vinyl ether) double bond that confers special biophysical, biochemical, and chemical properties to these lipids. However, the genetics of their biosynthesis is not fully understood, since no gene has been identified that encodes plasmanylethanolamine desaturase (E.C. 1.14.99.19), the enzyme introducing the crucial alk-1'-enyl ether double bond. The present work identifies this gene as transmembrane protein 189 (TMEM189). Inactivation of the TMEM189 gene in human HAP1 cells led to a total loss of plasmanylethanolamine desaturase activity, strongly decreased plasmalogen levels, and accumulation of plasmanylethanolamine substrates and resulted in an inability of these cells to form labeled plasmalogens from labeled alkylglycerols. Transient expression of TMEM189 protein, but not of other selected desaturases, recovered this deficit. TMEM189 proteins contain a conserved protein motif (pfam10520) with eight conserved histidines that is shared by an alternative type of plant desaturase but not by other mammalian proteins. Each of these histidines is essential for plasmanylethanolamine desaturase activity. Mice homozygous for an inactivated Tmem189 gene lacked plasmanylethanolamine desaturase activity and had dramatically lowered plasmalogen levels in their tissues. These results assign the TMEM189 gene to plasmanylethanolamine desaturase and suggest that the previously characterized phenotype of Tmem189-deficient mice may be caused by a lack of plasmalogens.


Asunto(s)
Lípidos/genética , Oxidorreductasas/genética , Plasmalógenos/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Línea Celular , Humanos , Ratones , Oxidación-Reducción , Oxidorreductasas/metabolismo , Fenotipo , Plasmalógenos/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Compuestos de Vinilo/metabolismo
3.
J Lipid Res ; 63(6): 100222, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537527

RESUMEN

Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.


Asunto(s)
Éter , Lipidómica , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis , Animales , Diferenciación Celular , Éter/metabolismo , Éteres , Metabolismo de los Lípidos/genética , Ratones , Fosfolípidos/metabolismo , Triglicéridos/metabolismo
4.
Fungal Genet Biol ; 129: 86-100, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145992

RESUMEN

In filamentous fungi, arginine methylation has been implicated in morphogenesis, mycotoxin biosynthesis, pathogenicity, and stress response although the exact role of this posttranslational modification in these processes remains obscure. Here, we present the first genome-wide transcriptome analysis in filamentous fungi that compared expression levels of genes regulated by type I and type II protein arginine methyltransferases (PRMTs). In Aspergillus nidulans, three conserved type I and II PRMTs are present that catalyze asymmetric or symmetric dimethylation of arginines. We generated a double type I mutant (ΔrmtA/rmtB) and a combined type I and type II mutant (ΔrmtB/rmtC) to perform genome-wide comparison of their effects on gene expression, but also to monitor putative overlapping activities and reciprocal regulations of type I and type II PRMTs in Aspergillus. Our study demonstrates, that rmtA and rmtC as type I and type II representatives act together as repressors of proteins that are secreted into the extracellular region as the majority of up-regulated genes are mainly involved in catabolic pathways that constitute the secretome of Aspergillus. In addition to a strong up-regulation of secretory genes we found a significant enrichment of down-regulated genes involved in processes related to oxidation-reduction, transmembrane transport and secondary metabolite biosynthesis. Strikingly, nearly 50% of down-regulated genes in both double mutants correspond to redox reaction/oxidoreductase processes, a remarkable finding in light of our recently observed oxidative stress phenotypes of ΔrmtA and ΔrmtC. Finally, analysis of nuclear and cytoplasmic extracts for mono-methylated proteins revealed the presence of both, common and specific substrates of RmtA and RmtC. Thus, our data indicate that type I and II PRMTs in Aspergillus seem to co-regulate the same biological processes but also specifically affect other pathways in a non-redundant fashion.


Asunto(s)
Aspergillus nidulans/enzimología , Aspergillus nidulans/genética , Genoma Fúngico , Proteína-Arginina N-Metiltransferasas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Oxidación-Reducción , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Metabolismo Secundario , Factores de Transcripción/genética
5.
J Lipid Res ; 59(5): 901-909, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540573

RESUMEN

Plasmanylethanolamine desaturase (PEDS) (EC 1.14.99.19) introduces the 1-prime double bond into plasmalogens, one of the most abundant phospholipids in the human body. This labile membrane enzyme has not been purified and its coding sequence is unknown. Previous assays for this enzyme used radiolabeled substrates followed by multistep processing. We describe here a straight-forward method for the quantification of PEDS in enzyme incubation mixtures using pyrene-labeled substrates and reversed-phase HPLC with fluorescence detection. After stopping the reaction with hydrochloric acid in acetonitrile, the mixture was directly injected into the HPLC system without the need of lipid extraction. The substrate, 1-O-pyrenedecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and the lyso-substrate, 1-O-pyrenedecyl-sn-glycero-3-phosphoethanolamine, were prepared from RAW-12 cells deficient in PEDS activity and were compared for their performance in the assay. Plasmalogen levels in mouse tissues and in cultured cells did not correlate with PEDS levels, indicating that the desaturase might not be the rate limiting step for plasmalogen biosynthesis. Among selected mouse organs, the highest activities were found in kidney and in spleen. Incubation of intact cultivated mammalian cells with 1-O-pyrenedecyl-sn-glycerol, extraction of lipids, and treatment with hydrochloric or acetic acid in acetonitrile allowed sensitive monitoring of PEDS activity in intact cells.


Asunto(s)
Cromatografía Líquida de Alta Presión , Oxidorreductasas/análisis , Plasmalógenos/química , Pirenos/química , Espectrometría de Fluorescencia , Compuestos de Vinilo/química , Animales , Células Cultivadas , Ratones , Estructura Molecular , Oxidorreductasas/deficiencia , Oxidorreductasas/metabolismo , Plasmalógenos/biosíntesis , Pirenos/metabolismo , Especificidad por Sustrato , Compuestos de Vinilo/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(8): 2431-6, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675482

RESUMEN

Tetrahydrobiopterin is a cofactor synthesized from GTP with well-known roles in enzymatic nitric oxide synthesis and aromatic amino acid hydroxylation. It is used to treat mild forms of phenylketonuria. Less is known about the role of tetrahydrobiopterin in lipid metabolism, although it is essential for irreversible ether lipid cleavage by alkylglycerol monooxygenase. Here we found intracellular alkylglycerol monooxygenase activity to be an important regulator of alkylglycerol metabolism in intact murine RAW264.7 macrophage-like cells. Alkylglycerol monooxygenase was expressed and active also in primary mouse bone marrow-derived monocytes and "alternatively activated" M2 macrophages obtained by interleukin 4 treatment, but almost missing in M1 macrophages obtained by IFN-γ and lipopolysaccharide treatment. The cellular lipidome of RAW264.7 was markedly changed in a parallel way by modulation of alkylglycerol monooxygenase expression and of tetrahydrobiopterin biosynthesis affecting not only various ether lipid species upstream of alkylglycerol monooxygenase but also other more complex lipids including glycosylated ceramides and cardiolipins, which have no direct connection to ether lipid pathways. Alkylglycerol monooxygenase activity manipulation modulated the IFN-γ/lipopolysaccharide-induced expression of inducible nitric oxide synthase, interleukin-1ß, and interleukin 1 receptor antagonist but not transforming growth factor ß1, suggesting that alkylglycerol monooxygenase activity affects IFN-γ/lipopolysaccharide signaling. Our results demonstrate a central role of tetrahydrobiopterin and alkylglycerol monooxygenase in ether lipid metabolism of murine macrophages and reveal that alteration of alkylglycerol monooxygenase activity has a profound impact on the lipidome also beyond the class of ether lipids.


Asunto(s)
Biopterinas/análogos & derivados , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Animales , Biopterinas/farmacología , Células de la Médula Ósea/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Análisis por Conglomerados , GTP Ciclohidrolasa/metabolismo , Técnicas de Silenciamiento del Gen , Interferón gamma/farmacología , Lentivirus/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo
8.
Biochem J ; 443(1): 279-86, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22220568

RESUMEN

Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure-function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis-Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase.


Asunto(s)
Biopterinas/análogos & derivados , Oxigenasas de Función Mixta/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Biopterinas/química , Células CHO , Dominio Catalítico , Simulación por Computador , Secuencia de Consenso , Cricetinae , Humanos , Hierro/química , Cinética , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Proc Natl Acad Sci U S A ; 107(31): 13672-7, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643956

RESUMEN

Alkylglycerol monooxygenase (glyceryl-ether monooxygenase, EC 1.14.16.5) is the only enzyme known to cleave the O-alkyl bond of ether lipids which are essential components of brain membranes, protect the eye from cataract, interfere or mediate signalling processes, and are required for spermatogenesis. Along with phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, and nitric oxide synthase, alkylglycerol monooxygenase is one of five known enzymatic reactions which depend on tetrahydrobiopterin. Although first described in 1964, no sequence had been assigned to this enzyme so far since it lost activity upon protein purification attempts. A functional library screen using pools of plasmids of a rat liver expression library transfected to CHO cells was also unsuccessful. We therefore selected human candidate genes by bioinformatic approaches and by proteomic analysis of partially purified enzyme and tested alkylglycerol monooxygenase activity in CHO cells transfected with expression plasmids. Transmembrane protein 195, a predicted membrane protein with unassigned function which occurs in bilateral animals, was found to encode for tetrahydrobiopterin-dependent alkylglycerol monooxygenase. This sequence assignment was confirmed by injection of transmembrane protein 195 cRNA into Xenopus laevis oocytes. Transmembrane protein 195 shows no sequence homology to aromatic amino acid hydroxylases or nitric oxide synthases, but contains the fatty acid hydroxylase motif. This motif is found in enzymes which contain a diiron center and which carry out hydroxylations of lipids at aliphatic carbon atoms like alkylglycerol monooxygenase. This sequence assignment suggests that alkylglycerol monooxygenase forms a distinct third group among tetrahydrobiopterin-dependent enzymes.


Asunto(s)
Biopterinas/análogos & derivados , Oxigenasas de Función Mixta/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Biopterinas/metabolismo , Células CHO , Biología Computacional , Cricetinae , Cricetulus , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/genética , Ratas , Xenopus laevis
10.
Artículo en Inglés | MEDLINE | ID: mdl-36690320

RESUMEN

Alkylglycerol monooxygenase (AGMO) and plasmanylethanolamine desaturase (PEDS1) are enzymes involved in ether lipid metabolism. While AGMO degrades plasmanyl lipids by oxidative cleavage of the ether bond, PEDS1 exclusively synthesizes a specific subclass of ether lipids, the plasmalogens, by introducing a vinyl ether double bond into plasmanylethanolamine phospholipids. Ether lipids are characterized by an ether linkage at the sn-1 position of the glycerol backbone and they are found in membranes of different cell types. Decreased plasmalogen levels have been associated with neurological diseases like Alzheimer's disease. Agmo-deficient mice do not present an obvious phenotype under unchallenged conditions. In contrast, Peds1 knockout mice display a growth phenotype. To investigate the molecular consequences of Agmo and Peds1 deficiency on the mouse lipidome, five tissues from each mouse model were isolated and subjected to high resolution mass spectrometry allowing the characterization of up to 2013 lipid species from 42 lipid subclasses. Agmo knockout mice moderately accumulated plasmanyl and plasmenyl lipid species. Peds1-deficient mice manifested striking changes characterized by a strong reduction of plasmenyl lipids and a concomitant massive accumulation of plasmanyl lipids resulting in increased total ether lipid levels in the analyzed tissues except for the class of phosphatidylethanolamines where total levels remained remarkably constant also in Peds1 knockout mice. The rate-limiting enzyme in ether lipid metabolism, FAR1, was not upregulated in Peds1-deficient mice, indicating that the selective loss of plasmalogens is not sufficient to activate the feedback mechanism observed in total ether lipid deficiency.


Asunto(s)
Metabolismo de los Lípidos , Plasmalógenos , Animales , Ratones , Plasmalógenos/metabolismo , Lipidómica , Éteres , Ratones Noqueados
11.
J Lipid Res ; 53(7): 1410-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22508945

RESUMEN

The lack of fatty aldehyde dehydrogenase function in Sjögren Larsson Syndrome (SLS) patient cells not only impairs the conversion of fatty aldehydes into their corresponding fatty acid but also has an effect on connected pathways. Alteration of the lipid profile in these cells is thought to be responsible for severe symptoms such as ichtyosis, mental retardation, and spasticity. Here we present a novel approach to examine fatty aldehyde metabolism in a time-dependent manner by measuring pyrene-labeled fatty aldehyde, fatty alcohol, fatty acid, and alkylglycerol in the culture medium of living cells using HPLC separation and fluorescence detection. Our results show that in fibroblasts from SLS patients, fatty aldehyde is not accumulating but is converted readily into fatty alcohol. In control cells, in contrast, exclusively the corresponding fatty acid is formed. SLS patient cells did not display a hypersensitivity toward hexadecanal or hexadecanol, but 3-fold lower concentrations of the fatty alcohol than the corresponding fatty aldehyde were needed to induce toxicity in SLS patient and in control cells.


Asunto(s)
Aldehídos/metabolismo , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Pirenos/química , Síndrome de Sjögren-Larsson/metabolismo , Aldehído Oxidorreductasas/metabolismo , Aldehídos/química , Aldehídos/farmacología , Animales , Células CHO , Células Cultivadas , Cromatografía Líquida de Alta Presión , Cricetinae , Relación Dosis-Respuesta a Droga , Ácidos Grasos/química , Ácidos Grasos/farmacología , Fibroblastos/química , Fibroblastos/efectos de los fármacos , Humanos , Pirenos/metabolismo , Síndrome de Sjögren-Larsson/patología , Relación Estructura-Actividad , Factores de Tiempo
12.
Electrophoresis ; 32(13): 1684-91, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21647922

RESUMEN

Blue native electrophoresis (BNE) was applied to analyze the von Willebrand factor (vWF) multimers in their native state and to present a methodology to perform blue native electrophoresis on human plasma proteins, which has not been done before. The major difference between this method and the commonly used SDS-agarose gel electrophoresis is the lack of satellite bands in the high-resolution native gel. To further analyze this phenomenon, a second dimension was performed under denaturing conditions. Thereby, we obtained a pattern in which each protein sub-unit from the first dimension dissociates into three distinct sub-bands. These bands confirm the triplet structure, which consists of an intermediate band and two satellite bands. By introducing the second dimension, our novel method separates the triplet structure into a higher resolution than the commonly used SDS-agarose gel electrophoresis does. This helps considerably in the classification of ambiguous von Willebrand's disease subtypes. In addition, our method has the additional advantage of being able to resolve the triplet structure of platelet vWF multimers, which has not been identified previously through conventional SDS-agarose electrophoresis multimer analysis. This potential enables us to compare the triplet structure from platelet and plasmatic vWF, and may help to find out whether structural abnormalities concern the vWF molecule in the platelet itself, or whether they are due to the physiological processing of vWF shed into circulation. Owing to its resolution and sensitivity, this native separation technique offers a promising tool for the analysis and detection of von Willebrand disorder, and for the classification of von Willebrand's disease subtypes.


Asunto(s)
Plaquetas/química , Electroforesis en Gel de Agar/métodos , Complejos Multiproteicos/química , Enfermedades de von Willebrand/clasificación , Factor de von Willebrand/química , Electroforesis en Gel de Poliacrilamida , Humanos , Complejos Multiproteicos/análisis , Desnaturalización Proteica , Subunidades de Proteína , Factores de Tiempo , Enfermedades de von Willebrand/sangre , Factor de von Willebrand/análisis
13.
Cell Biosci ; 11(1): 54, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726865

RESUMEN

BACKGROUND: Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but also outside. Only the genomes of few engineered mouse strains have been sequenced. Since the role of the ether-lipid cleaving enzyme alkylglycerol monooxygenase (AGMO) in physiology and pathophysiology remains enigmatic, we created a knockout mouse model for AGMO using EUCOMM stem cells but unforeseen genotyping issues that did not agree with Mendelian distribution and enzyme activity data prompted an in-depth genomic validation of the mouse model. RESULTS: We report a gene segment tandem duplication event that occurred during the generation of an Agmo knockout-first allele by homologous recombination. Only low homology was seen between the breakpoints. While a single copy of the recombinant 18 kb cassette was integrated correctly around exon 2 of the Agmo gene, whole genome nanopore sequencing revealed a 94 kb duplication in the Agmo locus that contains Agmo wild-type exons 1-3. The duplication fooled genotyping by routine PCR, but could be resolved using qPCR-based genotyping, targeted locus amplification sequencing and nanopore sequencing. Despite this event, this Agmo knockout mouse model lacks AGMO enzyme activity and can therefore be used to study its physiological role. CONCLUSIONS: A duplication event occurred at the exact locus of the homologous recombination and was not detected by conventional quality control filters such as FISH or long-range PCR over the recombination sites. Nanopore sequencing provides a cost convenient method to detect such underrated off-target effects, suggesting its use for additional quality assessment of gene editing in mice and also other model organisms.

14.
J Lipid Res ; 51(6): 1554-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19965611

RESUMEN

Fatty aldehyde dehydrogenase (EC 1.2.1.48) converts long-chain fatty aldehydes to the corresponding acids. Deficiency in this enzyme causes the Sjogren Larsson Syndrome, a rare inherited disorder characterized by ichthyosis, spasticity, and mental retardation. Using a fluorescent aldehyde, pyrenedecanal, and HPLC with fluorescence detection, we developed a novel method to monitor fatty aldehyde dehydrogenase activity by quantification of the product pyrenedecanoic acid together with the substrate pyrenedecanal and possible side products, such as aldehyde adducts. As shown with recombinant enzymes, pyrenedecanal showed a high preference for fatty aldehyde dehydrogenase compared with other aldehyde dehydrogenases. The method allowed detection of fatty aldehyde dehydrogenase activity in nanogram amounts of microsomal or tissue protein and microgram amounts of Sjogren Larsson syndrome patients' skin fibroblast protein. It could successfully be adapted for the analysis of fatty aldehyde dehydrogenase activity in gel slices derived from low-temperature SDS-PAGE, showing that fatty aldehyde dehydrogenase activity from solubilized rat liver microsomes migrates as a dimer. Thus, monitoring of pyrenedecanoic acid formation from pyrenedecanal by HPLC with fluorescence detection provides a robust and sensitive method for determination of fatty aldehyde dehydrogenase activity.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Aldehídos/metabolismo , Ácidos Decanoicos/metabolismo , Pruebas de Enzimas/métodos , Pirenos/metabolismo , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Electroforesis en Gel de Poliacrilamida , Femenino , Fibroblastos/enzimología , Colorantes Fluorescentes/metabolismo , Humanos , Masculino , Ratones , Movimiento (Física) , Ratas , Temperatura
15.
Biochem J ; 418(3): 691-700, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19046139

RESUMEN

Physarum polycephalum expresses two closely related, calcium-independent NOSs (nitric oxide synthases). In our previous work, we showed that both NOSs are induced during starvation and apparently play a functional role in sporulation. In the present study, we characterized the genomic structures of both Physarum NOSs, expressed both enzymes recombinantly in bacteria and characterized their biochemical properties. Whereas the overall genomic organization of Physarum NOS genes is comparable with various animal NOSs, none of the exon-intron boundaries are conserved. Recombinant expression of clones with various N-termini identified N-terminal amino acids essential for enzyme activity, but not required for haem binding or dimerization, and suggests the usage of non-AUG start codons for Physarum NOSs. Biochemical characterization of the two Physarum isoenzymes revealed different affinities for L-arginine, FMN and 6R-5,6,7,8-tetrahydro-L-biopterin.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Physarum polycephalum/enzimología , Animales , Arginina/metabolismo , Secuencia de Bases , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Mononucleótido de Flavina/metabolismo , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Physarum polycephalum/genética , ARN Mensajero/metabolismo
16.
Cells ; 9(1)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861249

RESUMEN

The transcription factor FOXO3 is associated with poor outcome in high-stage neuroblastoma (NB), as it facilitates chemoprotection and tumor angiogenesis. In other tumor entities, FOXO3 stimulates metastasis formation, one of the biggest challenges in the treatment of aggressive NB. However, the impact of FOXO3 on the metastatic potential of neuronal tumor cells remains largely unknown. In the present study, we uncover the small leucine-rich proteoglycan family member lumican (LUM) as a FOXO3-regulated gene that stimulates cellular migration in NB. By a drug-library screen we identified the small molecular weight compound repaglinide (RPG) as a putative FOXO3 inhibitor. Here, we verify that RPG binds to the FOXO3-DNA-binding-domain (DBD) and thereby silences the transcriptional activity of FOXO3. Consistent with the concept that the FOXO3/LUM axis enhances the migratory capacity of aggressive NB cells, we demonstrate that stable knockdown of LUM abrogates the FOXO3-mediated increase in cellular migration. Importantly, FOXO3 inhibition by RPG represses the binding of FOXO3 to the LUM promoter, inhibits FOXO3-mediated LUM RNA and protein expression, and efficiently abrogates FOXO3-triggered cellular "wound healing" as well as spheroid-based 3D-migration. Thus, silencing the FOXO3/LUM axis by the FDA-approved compound RPG represents a promising strategy for novel therapeutic interventions in NB and other FOXO3-dependent tumors.


Asunto(s)
Carbamatos/farmacología , Regulación hacia Abajo , Proteína Forkhead Box O3/metabolismo , Lumican/genética , Neuroblastoma/genética , Piperidinas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Lumican/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos
17.
BMC Genomics ; 9: 6, 2008 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-18179708

RESUMEN

BACKGROUND: Physarum polycephalum, an acellular plasmodial species belongs to the amoebozoa, a major branch in eukaryote evolution. Its complex life cycle and rich cell biology is reflected in more than 2500 publications on various aspects of its biochemistry, developmental biology, cytoskeleton, and cell motility. It now can be genetically manipulated, opening up the possibility of targeted functional analysis in this organism. METHODS: Here we describe a large fraction of the transcribed genes by sequencing a cDNA library from the plasmodial stage of the developmental cycle. RESULTS: In addition to the genes for the basic metabolism we found an unexpected large number of genes involved in sophisticated signaling networks and identified potential receptors for environmental signals such as light. In accordance with the various developmental options of the plasmodial cell we found that many P. polycephalum genes are alternatively spliced. Using 30 donor and 30 acceptor sites we determined the splicing signatures of this species. Comparisons to various other organisms including Dictyostelium, the closest relative, revealed that roughly half of the transcribed genes have no detectable counterpart, thus potentially defining species specific adaptations. On the other hand, we found highly conserved proteins, which are maintained in the metazoan lineage, but absent in D. discoideum or plants. These genes arose possibly in the last common ancestor of Amoebozoa and Metazoa but were lost in D. discoideum. CONCLUSION: This work provides an analysis of up to half of the protein coding genes of Physarum polycephalum. The definition of splice motifs together with the description of alternatively spliced genes will provide a valuable resource for the ongoing genome project.


Asunto(s)
Perfilación de la Expresión Génica , Physarum polycephalum/genética , Empalme Alternativo , Animales , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Genes Protozoarios/genética , Humanos , Filogenia , Physarum polycephalum/citología , Physarum polycephalum/crecimiento & desarrollo , Transducción de Señal/genética
18.
Obes Surg ; 18(7): 905-10, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18330661

RESUMEN

Global protein expression analysis, known as proteomics, has emerged as a novel scientific technology currently successfully applied to several fields of medicine including cancer and transplantation. Thereby, a thorough exploration of the pathogenic mechanisms and a better understanding of the pathophysiology of diseases as well as identification of diagnostic biomarkers have been achieved. In this paper, we outline the basic principles and potential applications of this promising tool in bariatric surgery where proteomics might hold great potential for new insights into diagnostic and therapeutic decision making based on improved knowledge of metabolic regulations pre- and postsurgical interventions in morbidly obese patients.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Proteómica , Biomarcadores/metabolismo , Humanos , Obesidad Mórbida/complicaciones
19.
Diagnostics (Basel) ; 8(3)2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976874

RESUMEN

Two-dimensional difference gel electrophoresis (2D-DIGE) has been used for identification of possible biomarkers in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients. However, in different studies inconsistent results have been obtained. We wanted to analyze the diagnostic value of 2D-DIGE in early MS patients by comparing protein patterns between single and pooled samples of MS patients and controls. CSF samples of 20 MS patients and 10 control subjects were processed with 2D-DIGE. The so obtained protein patterns were analyzed with DeCyder 6.5 software, whereby we described variation of patterns presented in one gel as well as between different gels. Even when running single samples of patients of the same group in one gel, variation of protein patterns was high. The number of identified spots with different protein level varied between 4 and 30, depending on which sample batches were compared. We did not find a consistent pattern throughout all possible batch combinations. The inter-individual variation of protein expression as well as the susceptibility of 2D-DIGE for methodological variations makes use of 2D-DIGE as a diagnostic tool for MS and for detection of possible candidate biomarkers difficult, since detected proteins vary depending on which samples are compared.

20.
Biochem J ; 400(1): 75-80, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16848765

RESUMEN

Tetrahydrobiopterin is an essential cofactor for aromatic amino acid hydroxylases, ether lipid oxidase and nitric oxide synthases. Its biosynthesis in mammals is regulated by the activity of the homodecameric enzyme GCH (GTP cyclohydrolase I; EC 3.5.4.16). In previous work, catalytically inactive human GCH splice variants differing from the wild-type enzyme within the last 20 C-terminal amino acids were identified. In the present study, we searched for a possible role of these splice variants. Gel filtration profiles of purified recombinant proteins showed that variant GCHs form high-molecular-mass oligomers similar to the wild-type enzyme. Co-expression of splice variants together with wild-type GCH in mammalian cells revealed that GCH levels were reduced in the presence of splice variants. Commensurate with these findings, the GCH activity obtained for wild-type enzyme was reduced 2.5-fold through co-expression with GCH splice variants. Western blots of native gels suggest that splice variants form decamers despite C-terminal truncation. Therefore one possible explanation for the effect of GCH splice variants could be that inactive variants are incorporated into GCH heterodecamers, decreasing the enzyme stability and activity.


Asunto(s)
Empalme Alternativo , GTP Ciclohidrolasa/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Células CHO , Línea Celular , Cromatografía en Gel , Cricetinae , Cricetulus , Electroforesis en Gel de Poliacrilamida , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/aislamiento & purificación , Humanos , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA