Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555655

RESUMEN

ALS-linked mutations induce aberrant conformations within the SOD1 protein that are thought to underlie the pathogenic mechanism of SOD1-mediated ALS. Although clinical trials are underway for gene silencing of SOD1, these approaches reduce both wild-type and mutated forms of SOD1. Here, we sought to develop anti-SOD1 nanobodies with selectivity for mutant and misfolded forms of human SOD1 over wild-type SOD1. Characterization of two anti-SOD1 nanobodies revealed that these biologics stabilize mutant SOD1 in vitro. Further, SOD1 expression levels were enhanced and the physiological subcellular localization of mutant SOD1 was restored upon co-expression of anti-SOD1 nanobodies in immortalized cells. In human motor neurons harboring the SOD1 A4V mutation, anti-SOD1 nanobody expression promoted neurite outgrowth, demonstrating a protective effect of anti-SOD1 nanobodies in otherwise unhealthy cells. In vitro assays revealed that an anti-SOD1 nanobody exhibited selectivity for human mutant SOD1 over endogenous murine SOD1, thus supporting the preclinical utility of anti-SOD1 nanobodies for testing in animal models of ALS. In sum, the anti-SOD1 nanobodies developed and presented herein represent viable biologics for further preclinical testing in human and mouse models of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Anticuerpos de Dominio Único , Humanos , Ratones , Animales , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Anticuerpos de Dominio Único/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Pliegue de Proteína , Neuronas Motoras/metabolismo , Proyección Neuronal , Mutación
2.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592687

RESUMEN

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Enfermedad de Sandhoff/terapia , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Gangliósido G(M2)/metabolismo , Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Mutación , Enfermedad de Sandhoff/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , Transgenes , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
3.
J Lipid Res ; 59(3): 550-563, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29358305

RESUMEN

Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of ß-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.


Asunto(s)
Diferenciación Celular , Corteza Cerebral/patología , Células Madre Pluripotentes Inducidas/patología , Neuronas/patología , Organoides/patología , Enfermedad de Sandhoff/patología , Proliferación Celular , Células Cultivadas , Humanos , Lisosomas/metabolismo , beta-N-Acetilhexosaminidasas/deficiencia , beta-N-Acetilhexosaminidasas/metabolismo
4.
Mol Ther Methods Clin Dev ; 29: 426-436, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37273900

RESUMEN

Transient transfection of mammalian cells using plasmid DNA is a standard method to produce adeno-associated virus (AAV) vectors allowing for flexible and scalable manufacture. Typically, three plasmids are used to encode the necessary components to facilitate vector production; however, a dual-plasmid system, termed pDG, was introduced over 2 decades ago demonstrating two components could be combined resulting in comparable productivity to triple transfection. We have developed a novel dual-plasmid system, pOXB, with an alternative arrangement of sequences that results in significantly increased AAV vector productivity and percentage of full capsids packaged in comparison to the pDG dual design and triple transfection. Here, we demonstrate the reproducibility of these findings across seven recombinant AAV genomes and multiple capsid serotypes as well as the scalability of the pOXB dual-plasmid transfection at 50-L bioreactor scale. Purified drug substance showed a consistent product quality profile in line with triple-transfected vectors, except for a substantial improvement in intact genomes packaged using the pOXB dual- transfection system. Furthermore, pOXB dual- and triple-transfection-based vectors performed consistently in vivo. The pOXB dual plasmid represents an innovation in AAV manufacturing resulting in significant process gains while maintaining the flexibility of a transient transfection platform.

5.
Sci Transl Med ; 15(677): eabo1815, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599002

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (µDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-µDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; µDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.


Asunto(s)
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animales , Perros , Humanos , Recién Nacido , Ratones , Distrofina/genética , Distrofina/metabolismo , Terapia Genética , Corazón , Músculo Esquelético/metabolismo , Músculos/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
6.
Hum Gene Ther ; 32(15-16): 850-861, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33397196

RESUMEN

Recombinant adeno-associated viral (rAAV) vector-based gene therapy has been adapted for use in more than 100 clinical trials. This is mainly because of its excellent safety profile, ability to target a wide range of tissues, stable transgene expression, and significant clinical benefit. However, the major challenge is to produce a high-titer, high-potency vector to achieve a better therapeutic effect. Even though the three plasmid-based transient transfection method is currently being used for AAV production in many clinical trials, there are complications associated with scalability and it is not cost-effective. Other methods require either large-scale production of two herpes simplex viruses, rHSV-RepCap and rHSV-GOI (gene of interest), with high titers, or a stable cell line with high titer wild-type adenovirus infection. Both of these options make the process even more complex. To address this issue, we have developed a stable cell line-based production with the use of only one rHSV-RepCap virus. Using this new methodology in small-scale production, we achieved ∼1-6 E + 04 vg/cell of AAV9 in the top producer clones. Large-scale production in 10-CS (10-Cell Stack) of one of the top producing clones resulted in ∼1-2 E + 13 vg/10-CS with 50% of full capsid ratio after purification. This method could potentially be adapted to suspension cells. The major advantage of this novel methodology is that by using the rHSV-RepCap virus, high titer AAV can be produced with any GOI containing a stable adherent or suspension producer cell line. The use of this AAV production platform could be beneficial for the treatment of many diseases.


Asunto(s)
Dependovirus , Vectores Genéticos , Línea Celular , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Transfección
7.
Dis Model Mech ; 13(9)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32988972

RESUMEN

Duchenne muscular dystrophy (DMD) is a life-threatening neuromuscular disease caused by the lack of dystrophin, resulting in progressive muscle wasting and locomotor dysfunctions. By adulthood, almost all patients also develop cardiomyopathy, which is the primary cause of death in DMD. Although there has been extensive effort in creating animal models to study treatment strategies for DMD, most fail to recapitulate the complete skeletal and cardiac disease manifestations that are presented in affected patients. Here, we generated a mouse model mirroring a patient deletion mutation of exons 52-54 (Dmd Δ52-54). The Dmd Δ52-54 mutation led to the absence of dystrophin, resulting in progressive muscle deterioration with weakened muscle strength. Moreover, Dmd Δ52-54 mice present with early-onset hypertrophic cardiomyopathy, which is absent in current pre-clinical dystrophin-deficient mouse models. Therefore, Dmd Δ52-54 presents itself as an excellent pre-clinical model to evaluate the impact on skeletal and cardiac muscles for both mutation-dependent and -independent approaches.


Asunto(s)
Cardiomiopatías/genética , Distrofina/genética , Exones/genética , Eliminación de Gen , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Cardiomegalia/complicaciones , Cardiomegalia/fisiopatología , Cardiomiopatías/complicaciones , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fuerza Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/fisiopatología , Sarcolema/metabolismo , Taquicardia/complicaciones , Taquicardia/fisiopatología
8.
Mol Ther Methods Clin Dev ; 11: 92-105, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30417024

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by mutations in the dystrophin gene. DMD boys are wheelchair-bound around 12 years and generally survive into their twenties. There is currently no effective treatment except palliative care, although personalized treatments such as exon skipping, stop codon read-through, and viral-based gene therapies are making progress. Patients present with skeletal muscle pathology, but most also show cardiomyopathy by the age of 10. A systemic therapeutic approach is needed that treats the heart and skeletal muscle defects in all patients. The dystrophin-related protein utrophin has been shown to compensate for the lack of dystrophin in the mildly affected BL10/mdx mouse. The purpose of this investigation was to demonstrate that AAV9-mediated micro-utrophin transgene delivery can not only functionally replace dystrophin in the heart, but also attenuate the skeletal muscle phenotype in severely affected D2/mdx mice. The data presented here show that utrophin can indeed alleviate the pathology in skeletal and cardiac muscle in D2/mdx mice. These results endorse the view that utrophin modulation has the potential to increase the quality life of all DMD patients whatever their mutation.

9.
Mol Cancer Ther ; 17(6): 1251-1258, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654062

RESUMEN

Glioblastoma (GBM) is the most common and lethal form of primary brain tumor with dismal median and 2-year survivals of 14.5 months and 18%, respectively. The paucity of new therapeutic agents stems from the complex biology of a highly adaptable tumor that uses multiple survival and proliferation mechanisms to circumvent current treatment approaches. Here, we investigated the potency of a new generation of siRNAs to silence gene expression in orthotopic brain tumors generated by transplantation of human glioma stem-like cells in athymic nude mice. We demonstrate that cholesterol-conjugated, nuclease-resistant siRNAs (Chol-hsiRNAs) decrease mRNA and silence luciferase expression by 90% in vitro in GBM neurospheres. Furthermore, Chol-hsiRNAs distribute broadly in brain tumors after a single intratumoral injection, achieving sustained and potent (>45% mRNA and >90% protein) tumor-specific gene silencing. This readily available platform is sequence-independent and can be adapted to target one or more candidate GBM driver genes, providing a straightforward means of modulating GBM biology in vivoMol Cancer Ther; 17(6); 1251-8. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/genética , Silenciador del Gen , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Animales , Biomarcadores de Tumor , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , ARN Interferente Pequeño/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Hum Gene Ther ; 28(6): 510-522, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28132521

RESUMEN

GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in ß-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or ß-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and ß-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/ß developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/ß, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/ß intracranial injection among different species, despite encoding for self-proteins.


Asunto(s)
Dependovirus/genética , Discinesias/etiología , Gangliosidosis GM2/terapia , Vectores Genéticos/efectos adversos , Necrosis/etiología , Neuronas/metabolismo , beta-N-Acetilhexosaminidasas/genética , Animales , Apatía , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Discinesias/genética , Discinesias/metabolismo , Discinesias/patología , Femenino , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Gangliosidosis GM2/patología , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Sustancia Gris/metabolismo , Sustancia Gris/patología , Inyecciones Intraventriculares , Macaca fascicularis , Masculino , Necrosis/genética , Necrosis/metabolismo , Necrosis/patología , Neuronas/patología , Subunidades de Proteína/efectos adversos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Tálamo/metabolismo , Tálamo/patología , Transgenes , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , beta-N-Acetilhexosaminidasas/efectos adversos , beta-N-Acetilhexosaminidasas/metabolismo
11.
Cancer Cell ; 19(3): 359-71, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21397859

RESUMEN

High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Daño del ADN , Glioma/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Citometría de Flujo , Glioma/genética , Glioma/patología , Células HEK293 , Humanos , Immunoblotting , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Ratones SCID , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/efectos de la radiación , Factor de Transcripción 2 de los Oligodendrocitos , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína p53 Supresora de Tumor/genética
12.
Mol Cell Biol ; 30(24): 5787-94, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20956556

RESUMEN

Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Homeostasis/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antioxidantes/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patología , Ataxia Telangiectasia/fisiopatología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Nucleares , Peroxidasas , Proteínas/genética , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA