Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666870

RESUMEN

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Asunto(s)
Empalme Alternativo , Diabetes Mellitus , Antígenos CD59/genética , Antígenos CD59/metabolismo , Diabetes Mellitus/genética , Humanos , Secreción de Insulina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
J Immunol ; 202(1): 131-141, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518569

RESUMEN

Protein kinase RNA-activated (PKR) is a cytoplasmic receptor for dsRNA, and as such is involved in detection of viral infection. On binding dsRNA, PKR dimerizes, autophosphorylates, and then phosphorylates its substrate, eukaryotic translation initiation factor 2 subunit α (eIF2α), causing inhibition of mRNA translation and shutdown of viral protein production. However, active PKR has also been found to be involved in the NF-κB signaling pathway by inducing phosphorylation of IκBα. PKR is regulated by the noncoding RNA nc886, which has altered expression in cancer. We have found that expression of nc886 is highly upregulated during activation of human CD4+ T cells. As has been described in other cell types, nc886 bound to PKR in human T cell lysates, preventing PKR phosphorylation by polyinosinic:polycytidylic acid or HIV trans-activation response element RNA in lysates of T cell lines or primary human CD4+ T cells. Using clonal human T cell lines, we found that nc886 expression was strictly required for IFN-γ and IL-2 expression and secretion after T cell activation but did not affect proliferation or activation-induced cell death. In stimulated human PBMCs, nc886 expression strongly correlated with IFN-γ expression. Although nc886 inhibited PKR activation by dsRNA, it was required for PKR phosphorylation during T cell stimulation, with subsequent NF-κB signaling and CREB phosphorylation. nc886 also regulated PKR phosphorylation during human monocyte-derived macrophage activation. We have therefore identified nc886 as a noncoding RNA marker of T cell activation and regulator of PKR-dependent signaling.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , ARN Largo no Codificante/genética , eIF-2 Quinasa/metabolismo , Línea Celular , Células Clonales , Citocinas/metabolismo , Dimerización , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos/genética , Activación de Macrófagos/genética , FN-kappa B/metabolismo , Fosforilación , ARN Viral/inmunología , Transducción de Señal
3.
FASEB J ; 33(11): 12425-12434, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31412214

RESUMEN

CD59 is a glycosylphosphatidylinositol (GPI)-anchored cell surface inhibitor of the complement membrane attack complex (MAC). We showed previously that CD59 is highly expressed in pancreatic islets but is down-regulated in rodent models of diabetes. CD59 knockdown but not enzymatic removal of cell surface CD59 led to a loss of glucose-stimulated insulin secretion (GSIS), suggesting that an intracellular pool of CD59 is required. In this current paper, we now report that non-GPI-anchored CD59 is present in the cytoplasm, colocalizes with exocytotic protein vesicle-associated membrane protein 2, and completely rescues GSIS in cells lacking endogenous CD59 expression. The involvement of cytosolic non-GPI-anchored CD59 in GSIS is supported in phosphatidylinositol glycan class A knockout GPI anchor-deficient ß-cells, in which GSIS is still CD59 dependent. Furthermore, site-directed mutagenesis demonstrated different structural requirements of CD59 for its 2 functions, MAC inhibition and GSIS. Our results suggest that CD59 is retrotranslocated from the endoplasmic reticulum to the cytosol, a process mediated by recognition of trimmed N-linked oligosaccharides, supported by the partial glycosylation of non-GPI-anchored cytosolic CD59 as well as the failure of N-linked glycosylation site mutant CD59 to reach the cytosol or rescue GSIS. This study thus proposes the previously undescribed existence of non-GPI-anchored cytosolic CD59, which is required for insulin secretion.-Golec, E., Rosberg, R., Zhang, E., Renström, E., Blom, A. M., King, B. C. A cryptic non-GPI-anchored cytosolic isoform of CD59 controls insulin exocytosis in pancreatic ß-cells by interaction with SNARE proteins.


Asunto(s)
Antígenos CD59/metabolismo , Citosol/metabolismo , Exocitosis , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Animales , Antígenos CD59/genética , Células CHO , Cricetulus , Insulina/genética , Células Secretoras de Insulina/citología , Oligosacáridos/genética , Oligosacáridos/metabolismo , Ratas , Proteínas SNARE/genética
4.
J Immunol ; 196(4): 1636-45, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26746193

RESUMEN

CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4(+) T cells with CD3 and CD46 also leads to the differentiation of a "switched" Th1 population, which shuts down IFN-γ secretion and upregulates IL-10 and is thought to be important for negative feedback regulation of the Th1 response. In the present study, we show that CD46 costimulation leads to amplified microRNA (miR) expression changes in human CD4(+) T cells, with associated increases in activation more potent than those mediated by the "classic" costimulator CD28. Blockade of cell surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of miR-150 in CD46-costimulated T cells and identify the glucose transporter 1 encoding transcript SLC2A1 as a target of miR-150 regulation, connecting miR-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced switched IL-10-secreting Th1 T cells and found increased expression of miR-150, compared with IFN-γ-secreting Th1 cells. Knockdown of miR-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miR-150-dependent mechanism.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Regulación de la Expresión Génica/inmunología , Transportador de Glucosa de Tipo 1/biosíntesis , Activación de Linfocitos/genética , Proteína Cofactora de Membrana/inmunología , MicroARNs/inmunología , Células TH1/inmunología , Separación Celular , Citocinas/metabolismo , Humanos , Immunoblotting , Activación de Linfocitos/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
5.
Curr Genet ; 62(2): 405-18, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26581629

RESUMEN

Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.


Asunto(s)
Cromosomas Fúngicos , Inestabilidad Genómica , Homeostasis , Saccharomyces cerevisiae/genética , Aneuploidia , Hibridación Genómica Comparativa , Replicación del ADN , ADN de Hongos/genética
6.
Cell Metab ; 29(1): 202-210.e6, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30293775

RESUMEN

We show here that human pancreatic islets highly express C3, which is both secreted and present in the cytosol. Within isolated human islets, C3 expression correlates with type 2 diabetes (T2D) donor status, HbA1c, and inflammation. Islet C3 expression is also upregulated in several rodent diabetes models. C3 interacts with ATG16L1, which is essential for autophagy. Autophagy relieves cellular stresses faced by ß cells during T2D and maintains cellular homeostasis. C3 knockout in clonal ß cells impaired autophagy and led to increased apoptosis after exposure of cells to palmitic acid and IAPP. In the absence of C3, autophagosomes do not undergo fusion with lysosomes. Thus, C3 may be upregulated in islets during T2D as a cytoprotective factor against ß cell dysfunction caused by impaired autophagy. Therefore, we revealed a previously undescribed intracellular function for C3, connecting the complement system directly to autophagy, with a broad potential importance in other diseases and cell types.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Complemento C3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Células A549 , Animales , Apoptosis , Autofagia , Células Hep G2 , Humanos , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ratas , Ratas Wistar
7.
J Microbiol Methods ; 111: 40-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25639739

RESUMEN

Aneuploidy is considered a widespread genetic variation in such cell populations as yeast strains, cell lines and cancer cells, and spontaneous changes in the chromosomal copy number may have implications for data interpretation. Thus, aneuploidy monitoring is essential during routine laboratory practice, especially while conducting biochemical and/or gene expression analyses. In the present study, we constructed a panel of whole chromosome painting probes (WCPPs) to monitor aneuploidy in a single yeast Saccharomyces cerevisiae cell. The WCPP-based system was validated using "normal" haploid and diploid cells, as well as disomic cells both with and without cell synchronisation. FISH that utilised WCPPs was combined with DNA cell cycle analysis (imaging cytometry) to provide a detailed analysis of signal variability during the cell cycle. Chromosome painting can be utilised to detect spontaneously formed disomic chromosomes and study aneuploidy-promoting conditions. For example, the frequency of disomic chromosomes was increased in cells lacking NAD(+)-dependent histone deacetylase Sir2p compared with wild-type cells (p<0.05). In conclusion, WCPPs may be considered to be a powerful molecular tool to identify individual genomic differences. Moreover, the WCPP-based system may be used at the single-cell level of analysis to supplement array-based techniques and high-throughput analyses at the population scale.


Asunto(s)
Aneuploidia , Pintura Cromosómica/métodos , Hibridación Fluorescente in Situ/métodos , Saccharomyces cerevisiae/genética , Análisis de la Célula Individual/métodos , Sondas de ADN
8.
J Biotechnol ; 210: 52-6, 2015 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-26116136

RESUMEN

The genetic differences and changes in genomic stability may affect fermentation processes involving baker's, brewer's and wine yeast strains. Thus, it seems worthwhile to monitor the changes in genomic DNA copy number of industrial strains. In the present study, we developed an in situ comparative genomic hybridization (CGH) to investigate the ploidy and genetic differences between selected industrial yeast strains. The CGH-based system was validated using the laboratory Saccharomyces cerevisiae yeast strains (haploid BY4741 and diploid BY4743). DNA isolated from BY4743 cells was considered a reference DNA. The ploidy and DNA gains and losses of baker's, brewer's and wine strains were revealed. Taken together, the in situ CGH was shown a helpful molecular tool to identify genomic differences between yeast industrial strains. Moreover, the in situ CGH-based system may be used at the single-cell level of analysis to supplement array-based techniques and high-throughput analyses at the population scale.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Genómica/métodos , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Variaciones en el Número de Copia de ADN , Fermentación , Genoma Fúngico , Microbiología Industrial , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA