Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Image Anal ; 99: 103356, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39378568

RESUMEN

Breast cancer is a significant global public health concern, with various treatment options available based on tumor characteristics. Pathological examination of excision specimens after surgery provides essential information for treatment decisions. However, the manual selection of representative sections for histological examination is laborious and subjective, leading to potential sampling errors and variability, especially in carcinomas that have been previously treated with chemotherapy. Furthermore, the accurate identification of residual tumors presents significant challenges, emphasizing the need for systematic or assisted methods to address this issue. In order to enable the development of deep-learning algorithms for automated cancer detection on radiology images, it is crucial to perform radiology-pathology registration, which ensures the generation of accurately labeled ground truth data. The alignment of radiology and histopathology images plays a critical role in establishing reliable cancer labels for training deep-learning algorithms on radiology images. However, aligning these images is challenging due to their content and resolution differences, tissue deformation, artifacts, and imprecise correspondence. We present a novel deep learning-based pipeline for the affine registration of faxitron images, the x-ray representations of macrosections of ex-vivo breast tissue, and their corresponding histopathology images of tissue segments. The proposed model combines convolutional neural networks and vision transformers, allowing it to effectively capture both local and global information from the entire tissue macrosection as well as its segments. This integrated approach enables simultaneous registration and stitching of image segments, facilitating segment-to-macrosection registration through a puzzling-based mechanism. To address the limitations of multi-modal ground truth data, we tackle the problem by training the model using synthetic mono-modal data in a weakly supervised manner. The trained model demonstrated successful performance in multi-modal registration, yielding registration results with an average landmark error of 1.51 mm (±2.40), and stitching distance of 1.15 mm (±0.94). The results indicate that the model performs significantly better than existing baselines, including both deep learning-based and iterative models, and it is also approximately 200 times faster than the iterative approach. This work bridges the gap in the current research and clinical workflow and has the potential to improve efficiency and accuracy in breast cancer evaluation and streamline pathology workflow.

2.
Comput Biol Med ; 173: 108318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522253

RESUMEN

Image registration can map the ground truth extent of prostate cancer from histopathology images onto MRI, facilitating the development of machine learning methods for early prostate cancer detection. Here, we present RAdiology PatHology Image Alignment (RAPHIA), an end-to-end pipeline for efficient and accurate registration of MRI and histopathology images. RAPHIA automates several time-consuming manual steps in existing approaches including prostate segmentation, estimation of the rotation angle and horizontal flipping in histopathology images, and estimation of MRI-histopathology slice correspondences. By utilizing deep learning registration networks, RAPHIA substantially reduces computational time. Furthermore, RAPHIA obviates the need for a multimodal image similarity metric by transferring histopathology image representations to MRI image representations and vice versa. With the assistance of RAPHIA, novice users achieved expert-level performance, and their mean error in estimating histopathology rotation angle was reduced by 51% (12 degrees vs 8 degrees), their mean accuracy of estimating histopathology flipping was increased by 5% (95.3% vs 100%), and their mean error in estimating MRI-histopathology slice correspondences was reduced by 45% (1.12 slices vs 0.62 slices). When compared to a recent conventional registration approach and a deep learning registration approach, RAPHIA achieved better mapping of histopathology cancer labels, with an improved mean Dice coefficient of cancer regions outlined on MRI and the deformed histopathology (0.44 vs 0.48 vs 0.50), and a reduced mean per-case processing time (51 vs 11 vs 4.5 min). The improved performance by RAPHIA allows efficient processing of large datasets for the development of machine learning models for prostate cancer detection on MRI. Our code is publicly available at: https://github.com/pimed/RAPHIA.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Radiología , Masculino , Humanos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Sci Rep ; 11(1): 18905, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556725

RESUMEN

Activity recognition using wearable sensors has gained popularity due to its wide range of applications, including healthcare, rehabilitation, sports, and senior monitoring. Tracking the body movement in 3D space facilitates behavior recognition in different scenarios. Wearable systems have limited battery capacity, and many critical challenges have to be addressed to gain a trade-off among power consumption, computational complexity, minimizing the effects of environmental interference, and achieving higher tracking accuracy. This work presents a motion tracking system based on magnetic induction (MI) to tackle the challenges and limitations inherent in designing a wireless monitoring system. We integrated a realistic prototype of an MI sensor with machine learning techniques and investigated one-sensor and two-sensor configuration setups for motion reconstruction. This approach is successfully evaluated using measured and synthesized datasets generated by the analytical model of the MI system. The system has an average distance root-mean-squared error (RMSE) error of 3 cm compared to the ground-truth real-world measured data with Kinect.

4.
Nat Commun ; 11(1): 2879, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493912

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Commun ; 11(1): 1551, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214095

RESUMEN

Recognizing human physical activities using wireless sensor networks has attracted significant research interest due to its broad range of applications, such as healthcare, rehabilitation, athletics, and senior monitoring. There are critical challenges inherent in designing a sensor-based activity recognition system operating in and around a lossy medium such as the human body to gain a trade-off among power consumption, cost, computational complexity, and accuracy. We introduce an innovative wireless system based on magnetic induction for human activity recognition to tackle these challenges and constraints. The magnetic induction system is integrated with machine learning techniques to detect a wide range of human motions. This approach is successfully evaluated using synthesized datasets, laboratory measurements, and deep recurrent neural networks.


Asunto(s)
Aprendizaje Profundo , Actividades Humanas/clasificación , Fenómenos Magnéticos , Monitoreo Fisiológico/métodos , Procesamiento de Señales Asistido por Computador , Humanos , Movimiento (Física) , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA