Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672016

RESUMEN

Reaction of 2,2'-bipyridine (2,2'-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2'-bipy (1), phen (2); Piv- is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2'-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)7(µ2-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4'-bipyridine (4,4'-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4'-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = -1.03 cm-1 for 1 and 2). According to magnetic data analysis (JMn-Mn = -(2.69 ÷ 0.42) cm-1) and DFT calculations (JMn-Mn = -(6.9 ÷ 0.9) cm-1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = -57.8 cm-1, JFe-Mn = -20.12 cm-1).


Asunto(s)
Acetatos/química , Complejos de Coordinación/química , Compuestos Heterocíclicos/química , Manganeso/química , Valeratos/química , Adsorción , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Fenómenos Magnéticos , Conformación Molecular , Temperatura , Termogravimetría , Valeratos/síntesis química , Difracción de Rayos X
2.
Inorg Chem ; 54(8): 4021-8, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25831451

RESUMEN

The reaction between the 2-(1-(2,6-di(pyrazol-1-yl)-4-methylpyridyl)-4,5-(4,5-bis(propylthio)-tetrathiafulvalenyl)-1H-benzimidazol-2-yl)-pyridine ligand (L) and 2 equiv of Dy(hfac)3·2H2O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate) and 1 equiv each of Dy(hfac)3·2H2O and Dy(tta)3·2H2O (tta(-) = 2-thenoyltrifluoroacetonate) metallic precursors leads to two dinuclear complexes, [Dy2(hfac)6(L)]·(CH2Cl2)2·C6H14 (1) and [Dy2(hfac)3(tta)3(L)] (2), respectively. Their X-ray structures reveal that the two coordination sites are occupied by one Dy(III) ion. The Dy(III) ion coordinated to the benzoimidazolylpyridine (bzip) moiety adopts a D4d coordination sphere, while the Dy(III) ion coordinated to the 2,6-di(pyrazol-1-yl)-4-pyridine (dpp) moiety is in a D3h surrounding. In a zero dc field, the dynamic magnetic measurements show a slow relaxation for the D4d eight-coordination Dy(III) magnetization for 1 and 2. Application of an external dc field induces multirelaxation signals of the magnetic susceptibility for both compounds. The low frequency and high frequency of the out-of-phase magnetic signals are attributed to the Dy(III) ion in D4d and D3h surroundings, respectively. The two complexes can be described as double induced-field mononuclear single-molecule magnets.

3.
Inorg Chem ; 54(11): 5384-97, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25965094

RESUMEN

The reaction between the TTF-fused dipyrido[3,2-a:2',3'-c]phenazine (dppz) ligand (L) and 1 equiv of Ln(hfac)3·2H2O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetyacetonate) or 1 equiv of Ln(tta)3·2H2O (tta(-) = 2-thenoyltrifluoroacetonate) (Ln(III) = Dy(III) or Yb(III)) metallic precursors leads to four mononuclear complexes of formula [Ln(hfac)3(L)]·C6H14 (Ln(III) = Dy(III) (1), Yb(III) (2)) and [Ln(tta)3(L)]·C6H14 (Ln(III) = Dy(III) (3), Yb(III) (4)), respectively. Their X-ray structures reveal that the Ln(III) ion is coordinated to the bischelating nitrogenated coordination site and adopts a D4d coordination environment. The dynamic magnetic measurements show a slow relaxation of the Dy(III) magnetization for 1 and 3 with parameters highlighting a slower relaxation for 3 than for 1 (τ0 = 4.14(±1.36) × 10(-6) and 1.32(±0.07) × 10(-6) s with Δ = 39(±3) and 63.7(±0.7) K). This behavior as well as the orientation of the associated magnetic anisotropy axes have been rationalized on the basis of both crystal field splitting parameters and ab initio SA-CASSCF/RASSI-SO calculations. Irradiation of the lowest-energy HOMO → LUMO ILCT absorption band induces a (2)F5/2 → (2)F7/2 Yb-centered emission for 2 and 4. For these Yb(III) compounds, Stevens operators method has been used to fit the thermal variation of the magnetic susceptibilities, and the resulting MJ splittings have been correlated with the emission lines.

4.
Angew Chem Int Ed Engl ; 54(5): 1504-7, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25486900

RESUMEN

The influence of nuclear spin on the magnetic hysteresis of a single-molecule is evidenced. Isotopically enriched Dy(III) complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single-molecule magnets (SMMs), and provides an important step for their integration into molecule-based devices.

5.
J Am Chem Soc ; 135(44): 16332-5, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24127637

RESUMEN

The [Dy(tta)3(L)] complex behaves as a single ion magnet both in its crystalline phase and in solution. Experimental and theoretical magnetic anisotropy axes perfectly match and lie along the most electro-negative atoms of the coordination sphere. Both VSM and MCD measurements highlight the robustness of the complex, with persistence of the memory effect even in solution up to 4 K.

6.
Chemistry ; 19(24): 7895-903, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23589325

RESUMEN

Reaction of the ligands 4,5-bis(propylthio)tetrathiafulvalene-2-(2-pyridyl)benzimidazole (L(1)) and 4,5-bis(propylthio)tetrathiafulvalene-2-(2-pyridyl)-3-(2-pyridinylmethyl)benzimidazole (L(2)) with Dy(hfac)3⋅2 H2O (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate) gave mononuclear complexes [Dy(hfac)3(L(1))] (1) and [Dy(hfac)3(L(2))] (2). In both compounds the Dy(III) ion is surrounded by six oxygen and two nitrogen atoms. Complex 1 displays single-ion magnet (SIM) behaviour only in solution (Δ=12(1) K and τ0 =1.9(4)×10(-6)  s), while complex 2 is a SIM in both solution (Δ=15(2) K and τ0 =1.5(3)×10(-6)  s) and solid state (Δ=17(2) K and τ0 =9.5(2)×10(-6)  s). The SIM behaviour is obtained if the hydrogen bond is broken by dissolution (1 in solution) or by alkylation (2). Multiple relaxation processes were identified for 2 with two competing processes: a fast one in zero field and a slow one for fields higher than 500 Oe. The two processes coexist for intermediate applied magnetic field. Magnetic-dilution and frozen-solution measurements led to the conclusion that the origin of these multiple relaxation processes is not due to the property of a single molecule.

7.
Inorg Chem ; 52(3): 1610-20, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23323869

RESUMEN

The reaction between the tetrakis(2-pyridyl-N-oxidemethylthio)tetrathiafulvalene ligand (L) and Ln(hfac)(3)·2H(2)O precursors (where hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion and Ln = Tb(III) (1), Dy(III) (2), Er(III) (3), and Yb(III) (4) and (4b)) leads to the formation of five tetranuclear complexes of formula [Ln(4)(hfac)(12)(L)(2)](n)·xCHCl(3)·yC(6)H(14) (n = 1, x = 2, y = 0 for (1), (2), and (4), n = 1, x = 4 for (3), and n = 2, x = 2.5, y = 1 for (4b)). Their X-ray structures reveal that the surrounding of each Ln(III) center is filled by two N-oxide groups coming from two different ligands L. These tetranuclear complexes have the highest nuclearity which is reported until now for coordination compounds of lanthanide involving TTF-based ligands. Direct current (dc) measurements highlight the paramagnetic behavior of the compounds with a significant crystal field effect. The temperature dependences of static magnetic measurements for 4 have been fitted. The ground state corresponds to M(J) = ±5/2 while the first excited state (M(J) = ±3/2) was localized at +214 cm(-1) which was well correlated with the luminescence transition. UV-visible absorption properties have been experimentally measured and rationalized by time-dependent density functional theory (TD-DFT) calculations. Upon irradiation at 77 K and room temperature, in the range 24390-20835 cm(-1), both compounds 3 and 4 display a metal-centered luminescence attributed to (4)I(13/2) → (4)I(15/2) (6660 cm(-1)) and (2)F(5/2) → (2)F(7/2) (signal centered around the value of 9966 cm(-1)) transitions, respectively. The observed six transitions could be attributed to the M(J) state splitting due to the existence of two Yb1 and Yb2 ions with slightly different polyhedra in 4.


Asunto(s)
Compuestos Heterocíclicos/química , Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Ligandos , Campos Magnéticos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos
8.
Inorg Chem ; 52(3): 1398-408, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23339398

RESUMEN

Centro-symmetric dinuclear complexes of formula [Ln(tta)(3)(L)](2)·xCH(2)Cl(2), (tta(-) = 2-thenoyltrifluoroacetonate anion, x = 0.5 for Ln = Eu (1a), Tb (3), and Dy (4) and x = 0 for Ln = Eu (1b) and Nd (2)) have been synthesized using the tetrathiafulvalene-3-pyridine-N-oxide as a bridging ligand (L). X-ray structures have shown the formation of channels with CH(2)Cl(2) solvent inside. 1 is stable with both filled channels (at 150 K) and empty channels (at room temperature). The Dy(III) analogue displays a complex butterfly like hysteresis loop at 1.5 K. Photophysical properties of the coordination complexes have been studied by solution and solid-state absorption spectroscopy. Time-dependent density functional theory (TD-DFT) calculations have been carried out on the diamagnetic Y(III) derivative to shed light on the absorption spectrum. For 2, the excitation of the charge transfer transitions induces line shape emission in the near-infrared spectral range assigned to (4)F(3/2) → (4)I(9/2), (4)F(3/2) → (4)I(11/2), and (4)F(3/2) → (4)I(13/2) neodymium centered transitions. The reversible redox-activity of the ligand L makes possible an original sensitization process involving a ligand centered charge separation followed by energy transfer to the Nd(III) ion upon recombination.


Asunto(s)
Óxidos N-Cíclicos/química , Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Radicales Libres/química , Ligandos , Campos Magnéticos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos , Teoría Cuántica , Sales (Química)/química , Semiconductores
9.
Inorg Chem ; 52(10): 5978-90, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23659581

RESUMEN

The reaction between (4,5-bis(2-pyridyl-N-oxidemethylthio)-4',5')-ethylenedithiotetrathiafulvene (L(1)) or -methyldithiotetrathiafulvene (L(2)) ligands and Ln(hfac)3·nH2O precursors (Ln(III) = Pr, Tb, Dy, Er, and Yb) leads to the formation of seven dinuclear complexes of formula [Ln2(hfac)6(H2O)x(L(y))2] (x = 2 and y = 1 for Ln(III) = Pr (1); x = 0 and y = 1 for Ln(III) = Tb (2), Dy (3), Er (4) and Yb (5); x = 0 and y = 2 for Ln(III) = Tb (6) and Dy (7)). Their X-ray structures reveal that the coordination environment of each Ln(III) center is filled by two N-oxide groups coming from two different ligands L(y). UV-visible absorption properties have been experimentally measured and rationalized by TD-DFT calculations. The temperature dependences of static magnetic measurements have been fitted. The ground state corresponds to the almost pure |M(J) = ±13/2〉 while the first excited state (±0.77|±11/2〉 ± 0.50|±3/2〉 ± 0.39|±5/2〉) is located at 19 cm(-1) and 26.9 cm(-1) respectively for 3 and 7. Upon irradiation at 77 K and at room temperature, in the range 25,000-20,835 cm(-1), both compounds 4 and 5 display a metal-centered luminescence attributed to (4)I(13/2) → (4)I(15/2) (6660 cm(-1)) and (2)F(5/2) → (2)F(7/2) (9972 cm(-1)) transitions, respectively. Emission spectroscopy provides a direct probe of the |±5/2〉 ground state multiplet splitting, which has been confronted to magnetic data. The energy separation of 225 cm(-1) between the ground state and the first excited level (M(J) = ±3/2) fits exactly the second emission line (234 cm(-1)). While no out-phase-signal is detected for 3, the change of ligand L(1) → L(2) induces a change of coordination sphere symmetry around the Dy(III) increasing the energy splitting between the ground and first excited states, and 7 displays a single molecule magnet behavior.


Asunto(s)
Compuestos Heterocíclicos/química , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Imanes/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos
10.
Inorg Chem ; 52(17): 9711-3, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23944607

RESUMEN

The galvanostatic reaction of the [4,5-bis(2-pyridyl-N-oxidemethylthio)]-4',5'-methyldithiotetrathiafulvalene ligand with lanthanide ions in the presence of hexafluorophosphate (PF6(-)) anions afforded the highest-nuclearity lanthanide clusters decorated by tetrathiafulvalene-based ligands thanks to the original partial hydrolysis of the PF6(-) anions in difluorodioxophosphate (PO2F2(-)) bridging ligands.

11.
J Phys Chem A ; 117(25): 5241-50, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23768132

RESUMEN

Polarized reflectivity spectra versus temperature of two isostructural charge-transfer salts κ-(ET)4[M(CN)6][N(C2H5)4]·2H2O (M = Co(III) and Fe(III)) (ET = bis(ethylenedithio)tetrathiafulvalene) were studied. The electronic and vibrational spectra exhibit a drastic change at around 150 K. On the basis of the spectral analysis, we deduced the nature of the phase transition. The phase transition at 150 K is due to a charge ordering; above this temperature, strong charge fluctuations are observed.

12.
Chemistry ; 18(16): 5006-12, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22407897

RESUMEN

Trinuclear building block {Fe(2)NiO(Piv)(6)} (Piv = pivalate), which possessed pseudo-D(3h) symmetry, was linked by two ligands, pseudo-D(3h) ligand tris-(4-pyridyl)pyridine (L1) and C(2v) ligand 4-(N,N-dimethylamino)phenyl-2,6-bis(4-pyridyl)pyridine (L2) into two products with different topologies: 2D coordination polymer [Fe(2)NiO(Piv)(6)(L1)](n) (1), and discrete molecule [{Fe(2)NiO(Piv)(6)}(8) {L2}(12)], which had a nanocube structure (2). In compound 1, trinuclear {Fe(2)NiO(Piv)(6)} blocks were linked through ligand L1 into layers with honeycomb topology. In compound 2, eight trinuclear blocks were located in the vertices of the nanocube, with each L2 ligand linked to two {Fe(2)NiO(Piv)(6)} units. In the crystal structure, these nanocubes formed infinite catenated chains. Analysis of possible structures that could be assembled from these building blocks showed that compounds 1 and 2 corresponded to their respective predicted topologies. Compound [1⋅solvent] possessed a porous structure, in which the voids were filled by solvent molecules (DMF or DMSO). This structure was retained following desolvation, and compound 1 absorbed significant quantities of N(2) and H(2) at 78 K (S(BET) = 730 m(2) g(-1), H(2) sorption capacity: 0.9 % by weight at 865 Torr). Desolvation of [2⋅solvent] led to disorder of its crystal structure, and compound 2 only adsorbed negligible quantities of N(2) but adsorbed 0.27 % H(2) (by weight) at 855 Torr and 78 K. The magnetic properties of these complexes (temperature dependence of molar magnetic susceptibility) were governed by the magnetic properties of the trinuclear "building block".

13.
Inorg Chem ; 51(15): 8488-501, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22784369

RESUMEN

Six new 3d4f heterobimetallic dinuclear complexes, [(L(1))MLn(hfac)(3)] [M = Cu(II), Ni(II); Ln = Y(III), Er(III), Yb(III); L(1) = 4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenylenebis(salicylideneimine) and hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate], and one tetranuclear complex, [(L(2))Cu(OH)Er(hfac)(3)](2) (where L(2) = 4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenyleneaminosalicylideneimine), have been synthesized. All of the X-ray structures of the coordination complexes have been resolved from single-crystal diffraction. A quantitative magnetic approach has allowed one to determine the Cu-Ln ferromagnetic interaction for Gd(III) (1.29 cm(-1)) and Tb(III) (0.40 cm(-1)) and the antiferromagnetic interaction for Dy(III) (-0.46 cm(-1)) and Yb(III) (-2.25 cm(-1)), while in the case of Er(III), the magnetic interactions are negligible. The UV-visible absorption properties have been studied in a chloroform solution and rationalized by DFT and TD-DFT calculations. Upon oxidation, intramolecular SOMO → LUMO (20,800 cm(-1)) and SOMO-n → SOMO (11,350 cm(-1)) charge transfers appear, while the HOMO → LUMO charge transfers (20,750 cm(-1)) disappear. The reversibility of the oxidation has been confirmed by electrochemistry and absorption properties upon the addition of a reducing agent. Irradiation at the HOMO → LUMO charge-transfer energy of the dinuclear complex [(L(1))NiY(hfac)(3)] induces a ligand-centered fluorescence at 14,450 cm(-1).

14.
Inorg Chem ; 51(2): 978-84, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22208478

RESUMEN

In the [Er(hfac)(3)(L)](2) complex (1) (L = 4-tetrathiafulvalene-2,6-pyridinecarboxylic acid dimethyl ester), the Er(III) ion is bonded to the tridentate coordination site. Electrochemical and photophysical measurements in solution reveal that the tetrathiafulvalene moiety is a versatile antenna for erbium luminescence sensitization at 6540 cm(-1) upon excitation in the low-energy charge transfer transition (donor to acceptor charge transfer) at 16600 cm(-1) assigned via time-dependent density functional theory calculations.

15.
Chemistry ; 17(37): 10397-404, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21818794

RESUMEN

The reactions between the [Ln(tta)(3)]·2H(2)O precursors (tta(-)=2-thenoyltrifluoroacetonate anion) and the tetrathiafulvalene-3-pyridine-N-oxide ligands (L(1)) lead to dinuclear complexes of formula [{Ln(tta)(3)(L(1))}(2)]·xCH(2)Cl(2) (x=0.5 for Ln=Dy(III) (1) and x=0 for Ln=Gd(III) (2)). The crystal structure reveals that two {Ln(tta)(3)} moieties are bridged by two donors through the nitroxide groups. The Dy(III) centre adopts a distorted square antiprismatic oxygenated polyhedron structure. The antiferromagnetic nature of the exchange interaction between the two Dy(III) ions has been determined by two methods: 1) an empirical method using the [Dy(hfac)(3)(L(2))(2)] mononuclear complex as a model (3) (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion, L(2)=tetrathiafulvaleneamido-2-pyridine-N-oxide ligand), and 2) assuming an Ising model for the Dy(III) ion giving an exchange energy of -2.30 cm(-1), g=19.2 in the temperature range of 2-10 K. The antiferromagnetic interactions have been confirmed by a quantitative determination of J for the isotropic Gd(III) derivative (J=-0.031 cm(-1), g=2.003). Compound 1 displays a slow magnetisation relaxation without applied external magnetic fields. Alternating current susceptibility shows a thermally activated behaviour with pre-exponential factors of 5.48(4)×10(-7) s and an energy barrier of 87(1) K. The application of an external field of 1.6 kOe compensates the antiferromagnetic interactions and opens a new quantum tunnelling path.

16.
Chemistry ; 17(44): 12502-11, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-21938745

RESUMEN

(TTF-salphen)M compounds (TTF-salphen(2-)=4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenylenebis(salicylideneimine) dianion; M=Cu(II) and Ni(II)) have been treated with Ln(hfac)(3)·2H(2)O precursors (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion; Ln=Gd(III), Tb(III), and Dy(III)) to elaborate unprecedented 3d/4f TTF-based heterobimetallic complexes of formula [(TTF-salphen)MLn(hfac)(3)]. All the structures of these compounds have been resolved by X-ray diffraction on single crystals. The structures of these complexes are formed by a TTF-salphen(2-) ligand coordinated to the 3d metal ions in the inert tetradentate N(2)O(2) site. The Ln(hfac)(3) fragment is coordinated to the (TTF-salphen)M one through the two phenolate bridges. Even if the complexes are similar in both Cu(II) and Ni(II) families, the crystal packing is different. In the first case, dimers of TTF-salphen(2-) donors constitute the organic network. In the other case, a reminiscent organic network is observed with S···S contacts. The photophysical properties of [(TTF-salphen)CuDy(hfac)(3)] (3) in chloroform solution highlight the redshift of the TTF→salphen charge transfer (400 cm(-1)) relative to the analogue excitations in (TTF-salphen)Cu, which attest to the stability of these structures in solution. Static magnetic measurements have allowed us to quantify the ferromagnetic interactions (J=+1.29 cm(-1)) between Cu(II) and Gd(III) in the [(TTF-salphen)CuGd(hfac)(3)] complex. Finally, an empirical method that consists of the comparisons of the magnetic properties of [(TTF-salphen)CuTb(hfac)(3)] with [(TTF-salphen)NiTb(hfac)(3)] and [(TTF-salphen)CuDy(hfac)(3)] with [(TTF-salphen)NiDy(hfac)(3)] has established that ferromagnetic interactions take place between Cu(II) and Tb(III) ions, whereas unusual antiferromagnetic interactions have been identified between Cu(II) and Dy(III) ions.

17.
Chemphyschem ; 12(11): 2124-30, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21648046

RESUMEN

The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks.

18.
J Org Chem ; 76(23): 9720-32, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22017231

RESUMEN

The stereoselective convergent total syntheses of both enantiomers of the tetrahydroisoquinoline (THIQ) alkaloid crispine A are described. The THIQ precursors (-)-6 (90:10 dr) and (-)-11 (85:15 dr) were prepared from the alkylation-reduction sequence of a common α-amino nitrile (+)-4 derivative that has been conveniently prepared by anodic cyanation. Elaboration of the pyrrolidine ring of the title compound was cleanly achieved by two efficient ring closures methods involving (a) the displacement of a halogen atom and (b) the formation of a cyclic iminium cation to afford (-)-crispine A in 90% and 85% yields, respectively. A crystallization of enantioenriched (-)-crispine A (90:10 er) with 1 equiv of (-)-DBTA afforded the tartrate salt (-)-14 (≥98:2 dr) in 81% yield. The absolute S configuration of (-)-crispine A was simply deduced from examination of the X-ray data of tartrate salt (-)-14. Likewise, the natural (+)-crispine A was prepared in seven workup steps in an overall 30% yield, and reciprocal crystallization with (+)-DBTA afforded the enantiomeric tartrate salt (+)-14 in a ≥98:2 dr. Both enantiomers of crispine A were liberated from their respective DBTA salts in ≥98:2 er's which were determined by proton and carbon NMR spectroscopy, utilizing (R)-(+)-tert-butylphenylphosphinothioic acid (+)-15 as chiral solvating agent.


Asunto(s)
Isoquinolinas/química , Isoquinolinas/síntesis química , Electroquímica , Estructura Molecular , Estereoisomerismo
19.
Chemistry ; 16(39): 11926-41, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20827706

RESUMEN

The tetrathiafulvalene-amido-2-pyridine-N-oxide (L) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln(2)(hfac)(5)(O(2)CPhCl)(L)(3)]·2 H(2)O (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion, O(2)CPhCl(-)=3-chlorobenzoate anion) and mononuclear [Ln(hfac)(3)(L)(2)] complexes were obtained by using rare-earth ions with either large (Ln(III)=Pr, Gd) or small (Ln(III)=Y, Yb) ionic radius, respectively, whereas the use of Tb(III) that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb(2)(hfac)(4)(O(2)CPhCl)(2)(L)(2)]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid-state absorption spectroscopy, whereas time-dependent density functional theory (TD-DFT) calculations have been carried out on the diamagnetic Y(III) derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)(3)(L)(2)] complex, the excitation at 19,600 cm(-1) of the HOMO→LUMO+1/LUMO+2 charge-transfer transition induces both line-shape emissions in the near-IR spectral range assigned to the (2)F(5/2)→(2)F(7/2) (9860 cm(-1)) ytterbium-centered transition and a residual charge-transfer emission around 13,150 cm(-1). An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene-amido-2-pyridine-N-oxide chromophore is evidence of the Yb(III) sensitization.

20.
Chemistry ; 16(27): 8191-201, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20521285

RESUMEN

Different homoleptic and heteroleptic lithium-zinc combinations were prepared, and structural elements obtained on the basis of NMR spectroscopic experiments and DFT calculations. In light of their ability to metalate anisole, pathways were proposed to justify the synergy observed for some mixtures. The best basic mixtures were obtained either by combining ZnCl(2).TMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine) with [Li(tmp)] (tmp=2,2,6,6-tetramethylpiperidino; 3 equiv) or by replacing one of the tmp in the precedent mixture with an alkyl group. The reactivity of the aromatic lithium zincates supposedly formed was next studied, and proved to be substrate-, base-, and electrophile-dependent. The aromatic lithium zincates were finally involved in palladium-catalyzed cross-coupling reactions with aromatic chlorides and bromides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA