Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 199-226, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33524273

RESUMEN

Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sistema Nervioso Central , Humanos , Inflamación , Monocitos
2.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012543

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Linfocitos T Colaboradores-Inductores , Linfocitos B , Tejido Linfoide , Centro Germinal , Factores de Transcripción
3.
Cell ; 176(3): 610-624.e18, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30612739

RESUMEN

Plasma cells (PC) are found in the CNS of multiple sclerosis (MS) patients, yet their source and role in MS remains unclear. We find that some PC in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) originate in the gut and produce immunoglobulin A (IgA). Moreover, we show that IgA+ PC are dramatically reduced in the gut during EAE, and likewise, a reduction in IgA-bound fecal bacteria is seen in MS patients during disease relapse. Removal of plasmablast (PB) plus PC resulted in exacerbated EAE that was normalized by the introduction of gut-derived IgA+ PC. Furthermore, mice with an over-abundance of IgA+ PB and/or PC were specifically resistant to the effector stage of EAE, and expression of interleukin (IL)-10 by PB plus PC was necessary and sufficient to confer resistance. Our data show that IgA+ PB and/or PC mobilized from the gut play an unexpected role in suppressing neuroinflammation.


Asunto(s)
Inmunoglobulina A/metabolismo , Interleucina-10/metabolismo , Intestinos/inmunología , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Inmunoglobulina A/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Neuroinmunomodulación/inmunología , Células Plasmáticas/metabolismo
4.
Nat Immunol ; 25(3): 381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429453
5.
Immunity ; 54(3): 401-403, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691129

RESUMEN

Dectin-1 is known for promoting anti-fungal responses through the signaling molecule Card9. In this issue of Immunity, Deerhake et al. now report that during autoimmune neuroinflammation, Dectin-1 can promote a neuroprotective feed-forward pathway through Card9-independent upregulation of Oncostatin M.


Asunto(s)
Astrocitos , Transducción de Señal , Astrocitos/metabolismo , Humanos , Inflamación , Oncostatina M/metabolismo , Regulación hacia Arriba
7.
Immunol Rev ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890777

RESUMEN

The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.

8.
Trends Immunol ; 45(5): 320-321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632002

RESUMEN

Astrocytes are essential cells of the mammalian central nervous system (CNS), with key roles in development, homeostasis, and disease. Lee and colleagues recently showed that astrocytes can develop epigenetic memory, which enhances proinflammatory responses to subsequent stimulation, potentially driving sustained neurological disease pathology, such as in multiple sclerosis (MS).


Asunto(s)
Astrocitos , Enfermedades Neuroinflamatorias , Astrocitos/inmunología , Humanos , Animales , Enfermedades Neuroinflamatorias/inmunología , Esclerosis Múltiple/inmunología , Epigénesis Genética , Sistema Nervioso Central/inmunología , Inflamación/inmunología , Enfermedad Crónica
9.
Immunity ; 47(1): 80-92.e4, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709801

RESUMEN

Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.


Asunto(s)
Células Endoteliales/fisiología , Ganglios Linfáticos/fisiología , Células Madre Mesenquimatosas/fisiología , Organogénesis , Animales , Diferenciación Celular , Células Cultivadas , Coristoma , Embrión de Mamíferos , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal
10.
J Immunol ; 212(12): 1922-1931, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38683124

RESUMEN

Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Vía Clásica del Complemento , Pruebas de Neutralización , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vía Clásica del Complemento/inmunología , Vacunas contra la COVID-19/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Convalecencia , Anciano , Proteínas del Sistema Complemento/inmunología
11.
Semin Immunol ; 59: 101631, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35752572

RESUMEN

A better understanding of the pathological mechanisms that drive neurodegeneration in people living with multiple sclerosis (MS) is needed to design effective therapies to treat and/or prevent disease progression. We propose that CNS-intrinsic inflammation and re-modelling of the sub-arachnoid space of the leptomeninges sets the stage for neurodegeneration from the earliest stages of MS. While neurodegenerative processes are clinically silent early in disease, ageing results in neurodegenerative changes that become clinically manifest as progressive disability. Here we review pathological correlates of MS disease progression, highlight emerging mouse models that mimic key progressive changes in MS, and provide new perspectives on therapeutic approaches to protect against MS-associated neurodegeneration.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Humanos , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Progresión de la Enfermedad , Inflamación/patología , Modelos Animales de Enfermedad
12.
Immunol Rev ; 309(1): 75-85, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35815463

RESUMEN

In early 2020, a global emergency was upon us in the form of the coronavirus disease 2019 (COVID-19) pandemic. While horrific in its health, social and economic devastation, one silver lining to this crisis has been a rapid mobilization of cross-institute, and even cross-country teams that shared common goals of learning as much as we could as quickly as possible about the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how the immune system would respond to both the virus and COVID-19 vaccines. Many of these teams were formed by women who quickly realized that the classical model of "publish first at all costs" was maladaptive for the circumstances and needed to be supplanted by a more collaborative solution-focused approach. This review is an example of a collaboration that unfolded in separate countries, first Canada and the United States, and then also Israel. Not only did the collaboration allow us to cross-validate our results using different hands/techniques/samples, but it also took advantage of different vaccine types and schedules that were rolled out in our respective home countries. The result of this collaboration was a new understanding of how mucosal immunity to SARS-CoV-2 infection vs COVID-19 vaccination can be measured using saliva as a biofluid, what types of vaccines are best able to induce (limited) mucosal immunity, and what are potential correlates of protection against breakthrough infection. In this review, we will share what we have learned about the mucosal immune response to SARS-CoV-2 and to COVID-19 vaccines and provide a perspective on what may be required for next-generation pan-sarbecoronavirus vaccine approaches.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Femenino , Humanos , Inmunoglobulina A , SARS-CoV-2 , Vacunación
13.
Nat Immunol ; 14(9): 937-48, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913046

RESUMEN

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.


Asunto(s)
Citrobacter rodentium/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Receptor Notch2/metabolismo , Animales , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Dendríticas/citología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/mortalidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Interleucina-23/metabolismo , Mucosa Intestinal/microbiología , Lectinas Tipo C/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Receptor Notch2/deficiencia , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Bazo/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/inmunología
14.
Immunol Rev ; 299(1): 45-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107072

RESUMEN

The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Antígenos CD20 , Linfocitos B , Encefalomielitis Autoinmune Experimental/terapia , Humanos , Esclerosis Múltiple/terapia , Células Plasmáticas
15.
Immunol Rev ; 303(1): 119-137, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34046908

RESUMEN

IgA is produced in large quantities at mucosal surfaces by IgA+ plasma cells (PC), protecting the host from pathogens, and restricting commensal access to the subepithelium. It is becoming increasingly appreciated that IgA+ PC are not constrained to mucosal barrier sites. Rather, IgA+ PC may leave these sites where they provide both host defense and immunoregulatory function. In this review, we will outline how IgA+ PC are generated within the mucosae and how they subsequently migrate to their "classical" effector site, the gut lamina propria. From there we provide examples of IgA+ PC displacement from the gut to other parts of the body, referencing examples during homeostasis and inflammation. Lastly, we will speculate on mechanisms of IgA+ PC displacement to other tissues. Our aim is to provide a new perspective on how IgA+ PC are truly fantastic beasts of the immune system and identify new places to find them.


Asunto(s)
Ganglios Linfáticos Agregados , Células Plasmáticas , Inmunoglobulina A , Mucosa Intestinal , Ganglios Linfáticos
16.
Immunity ; 43(6): 1160-73, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682987

RESUMEN

Tertiary lymphoid tissues (TLTs) have been observed in the meninges of multiple sclerosis (MS) patients, but the stromal cells and molecular signals that support TLTs remain unclear. Here, we show that T helper 17 (Th17) cells induced robust TLTs within the brain meninges that were associated with local demyelination during experimental autoimmune encephalitis (EAE). Th17-cell-induced TLTs were underpinned by a network of stromal cells producing extracellular matrix proteins and chemokines, enabling leukocytes to reside within, rather than simply transit through, the meninges. Within the CNS, interactions between lymphotoxin αß (LTαß) on Th17 cells and LTßR on meningeal radio-resistant cells were necessary for the propagation of de novo interleukin-17 responses, and activated T cells from MS patients expressed elevated levels of LTßR ligands. Therefore, input from both Th17 cells and the lymphotoxin pathway induce the formation of an immune-competent stromal cell niche in the meninges.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Linfotoxina-alfa/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Células del Estroma/inmunología , Células Th17/inmunología , Adulto , Animales , Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Inflamación/inmunología , Masculino , Meninges/citología , Meninges/inmunología , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Transducción de Señal/inmunología
17.
J Immunol ; 208(2): 429-443, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34903642

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.


Asunto(s)
Formación de Anticuerpos , COVID-19/inmunología , Inmunidad Celular , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
18.
J Immunol ; 206(2): 282-291, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33397742

RESUMEN

The CNS is tightly regulated to maintain immune surveillance and efficiently respond to injury and infections. The current appreciation that specialized "brain-adjacent" regions in the CNS are in fact not immune privileged during the steady state, and that immune cells can take up residence in more immune-privileged areas of the CNS during inflammation with consequences on the adjacent brain parenchyma, beg the question of what cell types support CNS immunity. As they do in secondary lymphoid organs, we provide evidence in this review that stromal cells also underpin brain-resident immune cells. We review the organization and function of stromal cells in different anatomical compartments of the CNS and discuss their capacity to rapidly establish and elaborate an immune-competent niche that further sustains immune cells entering the CNS from the periphery. In summary, we argue that stromal cells are key cellular agents that support CNS-compartmentalized immunity.


Asunto(s)
Encéfalo/inmunología , Sistema Nervioso Central/inmunología , Células del Estroma/fisiología , Animales , Compartimento Celular , Microambiente Celular , Humanos , Inmunidad Celular , Vigilancia Inmunológica
19.
J Immunol ; 207(6): 1513-1521, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400521

RESUMEN

B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.


Asunto(s)
Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Centro Germinal/inmunología , Inmunización/métodos , Glicoproteína Mielina-Oligodendrócito/administración & dosificación , Receptores CCR6/deficiencia , Animales , Linfocitos B/metabolismo , Donantes de Sangre , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/inmunología , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Cultivadas , Quimiocina CCL20/metabolismo , Encefalomielitis Autoinmune Experimental/inducido químicamente , Células Endoteliales/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/genética , Receptores CCR6/genética , Proteínas Recombinantes/administración & dosificación
20.
J Biol Chem ; 296: 100050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33168630

RESUMEN

Large cytosolic protein aggregates are removed by two main cellular processes, autophagy and the ubiquitin-proteasome system, and defective clearance of these protein aggregates results in proteotoxicity and cell death. Recently, we found that the eIF2α kinase heme-regulated inhibitory (HRI) induced a cytosolic unfolded protein response to prevent aggregation of innate immune signalosomes, but whether HRI acts as a general sensor of proteotoxicity in the cytosol remains unclear. Here we show that HRI controls autophagy to clear cytosolic protein aggregates when the ubiquitin-proteasome system is inhibited. We further report that silencing the expression of HRI resulted in decreased levels of BAG3 and HSPB8, two proteins involved in chaperone-assisted selective autophagy, suggesting that HRI may control proteostasis in the cytosol at least in part through chaperone-assisted selective autophagy. Moreover, knocking down the expression of HRI resulted in cytotoxic accumulation of overexpressed α-synuclein, a protein known to aggregate in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In agreement with these data, protein aggregate accumulation and microglia activation were observed in the spinal cord white matter of 7-month-old Hri-/- mice as compared with Hri+/+ littermates. Moreover, aged Hri-/- mice showed accumulation of misfolded α-synuclein in the lateral collateral pathway, a region of the sacral spinal cord horn that receives visceral sensory afferents from the bladder and distal colon, a pathological feature common to α-synucleinopathies in humans. Together, these results suggest that HRI contributes to a general cytosolic unfolded protein response that could be leveraged to bolster the clearance of cytotoxic protein aggregates.


Asunto(s)
Autofagia , Microglía/metabolismo , Agregado de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Médula Espinal/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Noqueados , Microglía/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Médula Espinal/patología , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA