Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7981): 139-148, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704724

RESUMEN

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Asunto(s)
Aire , Áfidos , Enfermedades de las Plantas , Plantas , Ácido Salicílico , Transducción de Señal , Áfidos/fisiología , Áfidos/virología , Interacciones Microbiota-Huesped , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitología , Plantas/virología , Ácido Salicílico/metabolismo , Simbiosis , Nicotiana/inmunología , Nicotiana/metabolismo , Nicotiana/parasitología , Nicotiana/virología , Proteínas Virales/metabolismo , Animales
2.
J Proteome Res ; 23(9): 4043-4054, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39150755

RESUMEN

Given recent technological advances in proteomics, it is now possible to quantify plasma proteomes in large cohorts of patients to screen for biomarkers and to guide the early diagnosis and treatment of depression. Here we used CatBoost machine learning to model and discover biomarkers of depression in UK Biobank data sets (depression n = 4,479, healthy control n = 19,821). CatBoost was employed for model construction, with Shapley Additive Explanations (SHAP) being utilized to interpret the resulting model. Model performance was corroborated through 5-fold cross-validation, and its diagnostic efficacy was evaluated based on the area under the receiver operating characteristic (AUC) curve. A total of 45 depression-related proteins were screened based on the top 20 important features output by the CatBoost model in six data sets. Of the nine diagnostic models for depression, the performance of the traditional risk factor model was improved after the addition of proteomic data, with the best model having an average AUC of 0.764 in the test sets. KEGG pathway analysis of 45 screened proteins showed that the most significant pathway involved was the cytokine-cytokine receptor interaction. It is feasible to explore diagnostic biomarkers of depression using data-driven machine learning methods and large-scale data sets, although the results require validation.


Asunto(s)
Biomarcadores , Depresión , Aprendizaje Automático , Proteómica , Humanos , Biomarcadores/sangre , Proteómica/métodos , Depresión/sangre , Depresión/diagnóstico , Algoritmos , Curva ROC , Área Bajo la Curva , Proteoma/análisis , Proteoma/metabolismo , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Masculino , Femenino
3.
Neuroimage ; 285: 120499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097055

RESUMEN

Anxious depression is a common subtype of major depressive disorder (MDD) associated with adverse outcomes and severely impaired social function. It is important to clarify the underlying neurobiology of anxious depression to refine the diagnosis and stratify patients for therapy. Here we explored associations between anxiety and brain structure/function in MDD patients. A total of 260 MDD patients and 127 healthy controls underwent three-dimensional T1-weighted structural scanning and resting-state functional magnetic resonance imaging. Demographic data were collected from all participants. Differences in gray matter volume (GMV), (fractional) amplitude of low-frequency fluctuation ((f)ALFF), regional homogeneity (ReHo), and seed point-based functional connectivity were compared between anxious MDD patients, non-anxious MDD patients, and healthy controls. A random forest model was used to predict anxiety in MDD patients using neuroimaging features. Anxious MDD patients showed significant differences in GMV in the left middle temporal gyrus and ReHo in the right superior parietal gyrus and the left precuneus than HCs. Compared with non-anxious MDD patients, patients with anxious MDD showed significantly different GMV in the left inferior temporal gyrus, left superior temporal gyrus, left superior frontal gyrus (orbital part), and left dorsolateral superior frontal gyrus; fALFF in the left middle temporal gyrus; ReHo in the inferior temporal gyrus and the superior frontal gyrus (orbital part); and functional connectivity between the left superior temporal gyrus(temporal pole) and left medial superior frontal gyrus. A diagnostic predictive random forest model built using imaging features and validated by 10-fold cross-validation distinguished anxious from non-anxious MDD with an AUC of 0.802. Patients with anxious depression exhibit dysregulation of brain regions associated with emotion regulation, cognition, and decision-making, and our diagnostic model paves the way for more accurate, objective clinical diagnosis of anxious depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Depresión , Imagen por Resonancia Magnética/métodos , Encéfalo , Neuroimagen , Aprendizaje Automático
4.
Cancer Immunol Immunother ; 73(4): 74, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451314

RESUMEN

BACKGROUND: Pembrolizumab has been indicated in the treatment of solid tumors with high frequency microsatellite instability (MSI-H) or high tumor mutational burden (TMB-H); however, real-world data on the effectiveness of pembrolizumab with or without chemotherapy in this molecular subset remain limited. Our retrospective study evaluated the clinical efficacy and safety of pembrolizumab in treating advanced solid tumors with either MSI-H or TMB-H. METHODS: This retrospective study analyzed data from 116 patients with MSI-H or TMB-H advanced solid cancers who received pembrolizumab with or without chemotherapy regardless of treatment setting. We analyzed objective response rate (ORR) and progression-free survival (PFS). RESULTS: The top three cancer types were colorectal (48.6% MSI-H, 6.5% TMB-H), lung (15.4% MSI-H, 84.4% TMB-H), and gastric (15.4% MSI-H, 5.1% TMB-H). The ORR with pembrolizumab was 52.6%, including complete response (CR) observed in 8.6% (n = 10) of cases and partial responses (PR) in 43.9% (n = 51). Of the 93 patients who received first-line pembrolizumab, 52 patients achieved objective response (10 CR, 42 PR), with a median PFS of 14.0 months (95% confidence intervals [CI] 6.6-21.4). Of the 23 who received subsequent-line pembrolizumab, the ORR was 39.1%, disease control rate was 91.3%, and median PFS was 5.7 months (95% CI 3.9-7.5). Treatment-related adverse events were observed in 32 patients (27.6%), with no reported treatment-related fatal adverse events. CONCLUSION: Our study provides real-world evidence on the clinical effectiveness of pembrolizumab with or without chemotherapy in the treatment of patients with MSI-H and TMB-H advanced solid cancers.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Inestabilidad de Microsatélites , Neoplasias , Humanos , Estudios Retrospectivos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , China , Respuesta Patológica Completa
5.
J Virol ; 97(9): e0079023, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37607058

RESUMEN

Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.


Asunto(s)
Quirópteros , Ratones , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones/virología , Quirópteros/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Ratones Endogámicos BALB C , COVID-19/mortalidad , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/mortalidad , Pase Seriado , Antivirales/farmacología , Antivirales/uso terapéutico , Anticuerpos Antivirales/farmacología , Anticuerpos Antivirales/uso terapéutico , Zoonosis Virales/tratamiento farmacológico , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/virología , Envejecimiento , Evaluación Preclínica de Medicamentos
6.
J Virol ; 97(2): e0171922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688655

RESUMEN

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Asunto(s)
COVID-19 , Especificidad del Huésped , Pangolines , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Línea Celular , China , COVID-19/transmisión , COVID-19/virología , Pulmón/patología , Pulmón/virología , Ratones Transgénicos , Pangolines/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Porcinos , Quirópteros
7.
Mol Psychiatry ; 28(9): 3795-3805, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37658228

RESUMEN

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with a strong genetic liability. Despite extensive studies, however, the underlying pathogenic mechanism still remains elusive. In the present study, we identified a homozygous mutation in the intron 1 of Wnt1 via large-scale screening of ASD risk/causative genes and verified that this mutation created a new splicing donor site in the intron 1, and consequently, a decrease of WNT1 expression. Interestingly, humanized rat models harboring this mutation exhibited robust ASD-like behaviors including impaired ultrasonic vocalization (USV), decreased social interactions, and restricted and repetitive behaviors. Moreover, in the substantia nigra compacta (SNpc) and the ventral tegmental area (VTA) of mutant rats, dopaminergic (DAergic) neurons were dramatically lost, together with a comparable decrease in striatal DAergic fibers. Furthermore, using single-cell RNA sequencing, we demonstrated that the decreased DAergic neurons in these midbrain areas might attribute to a shift of the boundary of the local pool of progenitor cells from the hypothalamic floor plate to the midbrain floor plate during the early embryonic stage. Moreover, treatments of mutant rats with levodopa could attenuate the impaired USV and social interactions almost completely, but not the restricted and repetitive behaviors. Our results for the first time documented that the developmental loss of DAergic neurons in the midbrain underlies the pathogenesis of ASD, and that the abnormal progenitor cell patterning is a cellular underpinning for this developmental DAergic neuronal loss. Importantly, the effective dopamine therapy suggests a translational significance in the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista , Neuronas Dopaminérgicas , Animales , Ratas , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Intrones , Mesencéfalo/metabolismo , Sustancia Negra/metabolismo , Área Tegmental Ventral/metabolismo
8.
Sol Phys ; 299(8): 120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220341

RESUMEN

The Solar eruptioN Integral Field Spectrograph (SNIFS) is a solar-gazing spectrograph scheduled to fly in the summer of 2025 on a NASA sounding rocket. Its goal is to view the solar chromosphere and transition region at a high cadence (1 s) both spatially ( 0.5 ″ ) and spectrally (33 mÅ) viewing wavelengths around Lyman alpha (1216 Å), Si iii (1206 Å), and O v (1218 Å) to observe spicules, nanoflares, and possibly a solar flare. This time cadence will provide yet-unobserved detail about fast-changing features of the Sun. The instrument is comprised of a Gregorian-style reflecting telescope combined with a spectrograph via a specialized mirrorlet array that focuses the light from each spatial location in the image so that it may be spectrally dispersed without overlap from neighboring locations. This paper discusses the driving science, detailed instrument and subsystem design, and preintegration testing of the SNIFS instrument.

9.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415332

RESUMEN

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Ratones , Cisplatino/efectos adversos , Necroptosis , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL
10.
Endocr J ; 71(6): 571-582, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38644220

RESUMEN

This systematic review aimed to compare the influence of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on the efficacy and safety of elderly patients with type 2 diabetes and younger individuals. A comprehensive search of PubMed, Embase, and Web of Science databases was conducted up to September 2022. The summary standard means difference and odds ratios were calculated. Thirteen articles were included in the analysis. The incidence of adverse events (AEs) leading to discontinuation was higher in elderly patients (OR = 0.67, 95% CI 0.47 to 0.96, p = 0.028). However, no significant differences were observed in weight loss (SMD = 0.03, 95% CI -0.12 to 0.19, p = 0.686), HbA1c% (SMD = -0.02, 95% CI -0.11 to 0.08, p = 0.715), FBG levels (SMD = -0.03, 95% CI -0.11 to 0.06, p = 0.537), and the incidence of overall AEs (OR = 0.85, 95% CI 0.71 to 1.01, p = 0.072), serious AEs (OR = 0.68, 95% CI 0.45 to 1.04, p = 0.077), nausea (OR = 0.91, 95% CI 0.81 to 1.03, p = 0.140), vomiting (OR = 0.95, 95% CI 0.79 to 1.13, p = 0.532), diarrhea (OR = 0.86, 95% CI 0.72 to 1.02, p = 0.081), and hypoglycemia (OR = 1.22, 95% CI 0.90 to 1.65, p = 0.193). In conclusion, while certain AEs leading to discontinuation may be more prevalent in older patients, GLP-1RAs are effective for weight loss and lead to decreased glucose concentrations with a low rate of complications in elderly patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/efectos adversos , Anciano , Resultado del Tratamiento , Factores de Edad , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Glucemia/análisis , Hipoglucemia/inducido químicamente , Hipoglucemia/epidemiología , Pérdida de Peso/efectos de los fármacos , Persona de Mediana Edad , Agonistas Receptor de Péptidos Similares al Glucagón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA