Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 19(16): e2206238, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36617520

RESUMEN

SiOx is a promising next-generation anode material for lithium-ion batteries. However, its commercial adoption faces challenges such as low electrical conductivity, large volume expansion during cycling, and low initial Coulombic efficiency. Herein, to overcome these limitations, an eco-friendly in situ methodology for synthesizing carbon-containing mesoporous SiOx nanoparticles wrapped in another carbon layers is developed. The chemical reactions of vinyl-terminated silanes are designed to be confined inside the cationic surfactant-derived emulsion droplets. The polyvinylpyrrolidone-based chemical functionalization of organically modified SiO2 nanoparticles leads to excellent dispersion stability and allows for intact hybridization with graphene oxide sheets. The formation of a chemically reinforced heterointerface enables the spontaneous generation of mesopores inside the thermally reduced SiOx nanoparticles. The resulting mesoporous SiOx -based nanocomposite anodes exhibit superior cycling stability (≈100% after 500 cycles at 0.5 A g-1 ) and rate capability (554 mAh g-1 at 2 A g-1 ), elucidating characteristic synergetic effects in mesoporous SiOx -based nanocomposite anodes. The practical commercialization potential with a significant enhancement in initial Coulombic efficiency through a chemical prelithiation reaction is also presented. The full cell employing the prelithiated anode demonstrated more than 2 times higher Coulombic efficiency and discharge capacity compared to the full cell with a pristine anode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA