Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 290(36): 22061-75, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26183775

RESUMEN

Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.


Asunto(s)
Proliferación Celular/genética , ADN Mitocondrial/genética , Mutación , Células Madre/metabolismo , Animales , Western Blotting , Diferenciación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Miocardio/citología , Miocardio/metabolismo , Biogénesis de Organelos , Fosforilación Oxidativa , Consumo de Oxígeno/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Cardiovasc Diabetol ; 12: 136, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24063408

RESUMEN

BACKGROUND: To study the pathogenesis of diabetic cardiomyopathy, reliable animal models of type 2 diabetes are required. Physiologically relevant rodent models are needed, which not only replicate the human pathology but also mimic the disease process. Here we characterised cardiac metabolic abnormalities, and investigated the optimal experimental approach for inducing disease, in a new model of type 2 diabetes. METHODS AND RESULTS: Male Wistar rats were fed a high-fat diet for three weeks, with a single intraperitoneal injection of low dose streptozotocin (STZ) after fourteen days at 15, 20, 25 or 30 mg/kg body weight. Compared with chow-fed or high-fat diet fed control rats, a high-fat diet in combination with doses of 15-25 mg/kg STZ did not change insulin concentrations and rats maintained body weight. In contrast, 30 mg/kg STZ induced hypoinsulinaemia, hyperketonaemia and weight loss. There was a dose-dependent increase in blood glucose and plasma lipids with increasing concentrations of STZ. Cardiac and hepatic triglycerides were increased by all doses of STZ, in contrast, cardiac glycogen concentrations increased in a dose-dependent manner with increasing STZ concentrations. Cardiac glucose transporter 4 protein levels were decreased, whereas fatty acid metabolism-regulated proteins, including uncoupling protein 3 and pyruvate dehydrogenase (PDH) kinase 4, were increased with increasing doses of STZ. Cardiac PDH activity displayed a dose-dependent relationship between enzyme activity and STZ concentration. Cardiac insulin-stimulated glycolytic rates were decreased by 17% in 15 mg/kg STZ high-fat fed diabetic rats compared with control rats, with no effect on cardiac contractile function. CONCLUSIONS: High-fat feeding in combination with a low dose of STZ induced cardiac metabolic changes that mirror the decrease in glucose metabolism and increase in fat metabolism in diabetic patients. While low doses of 15-25 mg/kg STZ induced a type 2 diabetic phenotype, higher doses more closely recapitulated type 1 diabetes, demonstrating that the severity of diabetes can be modified according to the requirements of the study.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Miocardio/metabolismo , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/inducido químicamente , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/etiología , Glucógeno/metabolismo , Glucólisis , Metabolismo de los Lípidos , Lípidos/sangre , Masculino , Miocardio/enzimología , Fenotipo , Ratas , Ratas Wistar , Factores de Tiempo
4.
Nat Commun ; 8: 14050, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134239

RESUMEN

Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Línea Celular , Endosomas/ultraestructura , Femenino , Fibroblastos , Técnicas de Silenciamiento del Gen , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/ultraestructura , Miocitos Cardíacos , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA