Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Integr Neurosci ; 21(1): 6, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164442

RESUMEN

Insulin is known to act in the central nervous system to regulate several physiological and behavioural outcomes, including energy balance, glucose homeostasis and cognitive functioning. However, the neuronal populations through which insulin enhances cognitive performance remain unidentified. Insulin receptors are found in neuropeptide-Y (NPY) expressing neurons, which are abundant in the hypothalamus and hippocampus; regions involved in feeding behaviour and spatial memory, respectively. Here we show that mice with a tissue specific knockout of insulin receptors in NPY expressing neurons (IRl⁢o⁢x/l⁢o⁢x; NPYC⁢r⁢e⁣/+) display an impaired performance in the probe trial of the Morris Water Maze compared with control mice at both the 6 and the 12, but not at the 24 months time point, consistent with a crucial role of insulin and NPY in cognitive functioning. By 24 months of age all groups demonstrated similar reductions in spatial memory performance. Together, these data suggest that the mechanisms through which insulin influences cognitive functioning are, at least in part, via insulin receptor signaling in NPY expressing neurons. These results also highlight that cognitive impairments observed in aging may be due to impaired insulin signaling.


Asunto(s)
Envejecimiento/fisiología , Disfunción Cognitiva , Hipocampo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Receptor de Insulina/fisiología , Envejecimiento/metabolismo , Animales , Conducta Animal/fisiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/fisiopatología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Insulina/deficiencia , Memoria Espacial/fisiología
2.
Front Physiol ; 13: 841935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557971

RESUMEN

Obesogenic diets can produce hippocampal insulin resistance and impairments to hippocampal-dependent cognition. This study investigated the effect of disrupted insulin signaling in Neuropeptide Y (NPY) neurons on diet-induced deficits in hippocampal-dependent memory. Wild-type mice and mice that had a targeted knockout of insulin receptors on NPY cells (IRlox/lox;NPYCre/+) were given ad libitum access to a high-fat diet (high fat; HF), 10% sucrose solution (high sugar; HS), both high-fat diet and sucrose solution (high fat, high sugar; HFHS), or a normal fat control chow for 12 weeks. Mice were tested in the Morris Water Maze (MWM), a hippocampal-dependent spatial memory task. Glucose homeostasis was assessed via a glucose tolerance test. Independent of genotype, consumption of HF, but not HS, diet increased energy intake, body weight, and plasma leptin, and impaired glucose tolerance. Disrupted insulin signaling in NPY cells and dietary interventions did not significantly affect the ability of mice to learn the location of the platform in the MWM. However, for IRlox/lox control mice, consumption of HF, but not HS, diet resulted in reduced time spent in the target quadrant during the probe trial, suggesting a hippocampal-dependent memory deficit. IRlox/lox;NPYCre/+ mice had poor performance in the probe trial regardless of diet, suggesting a floor effect. This study did not find adverse effects of chronic sucrose intake on metabolic outcomes or hippocampal-dependent memory. These data also suggest that the effects of HF diet on hippocampal-dependent memory may be dependent on insulin signaling in hippocampal NPY cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA