Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29789390

RESUMEN

Cytoplasmic lipid droplets are important organelles in nearly every eukaryotic and some prokaryotic cells. Storing and providing energy is their main function, but they do not work in isolation. They respond to stimuli initiated either on the cell surface or in the cytoplasm as conditions change. Cellular stresses such as starvation and invasion are internal insults that evoke changes in droplet metabolism and dynamics. This review will first outline lipid droplet assembly and then discuss how droplets respond to stress and in particular nutrient starvation. Finally, the role of droplets in viral and microbial invasion will be presented, where an unresolved issue is whether changes in droplet abundance promote the invader, defend the host, to try to do both. The challenges of stress and infection are often accompanied by changes in physical contacts between droplets and other organelles. How these changes may result in improving cellular physiology, an ongoing focus in the field, is discussed.


Asunto(s)
Infecciones Bacterianas/metabolismo , Citoplasma/metabolismo , Gotas Lipídicas/metabolismo , Estrés Fisiológico , Virosis/metabolismo , Animales , Infecciones Bacterianas/patología , Citoplasma/microbiología , Citoplasma/patología , Citoplasma/virología , Humanos , Gotas Lipídicas/microbiología , Gotas Lipídicas/patología , Gotas Lipídicas/virología , Virosis/patología
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33380459
4.
Plant Cell ; 27(9): 2616-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26362606

RESUMEN

The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/genética
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt B): 1205-1211, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28711458

RESUMEN

Three proteins have been implicated in the assembly of cytoplasmic lipid droplets: seipin, FIT2, and perilipin. This review examines the current theories of seipin function as well as the evidence for the involvement of all three proteins in droplet biogenesis, and ends with a proposal of how they collaborate to regulate the formation of droplets. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Perilipina-1/metabolismo , Animales , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Proteínas de la Membrana/genética , Perilipina-1/genética
6.
BMC Cell Biol ; 16: 29, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26637296

RESUMEN

BACKGROUND: Seipin is required for the correct assembly of cytoplasmic lipid droplets. In the absence of the yeast seipin homolog Sei1p (formerly Fld1p), droplets are slow to bud from the endoplasmic reticulum, lack the normal component of proteins on their surface, are highly heterogeneous in size and shape, often bud into the nucleus, and promote local proliferation of the endoplasmic reticulum in which they become tangled. But the mechanism by which seipin catalyzes lipid droplet formation is still uncertain. RESULTS: Seipin prevents a localized accumulation of phosphatidic acid (PA puncta) at ER-droplet junctions. PA puncta were detected with three different probes: Opi1p, Spo20p(51-91) and Pah1p. A system of droplet induction was used to show that PA puncta were not present until droplets were formed; the puncta appeared regardless of whether droplets consisted of triacylglycerol or steryl ester. Deletion strains were used to demonstrate that a single phosphatidic acid-producing enzyme is not responsible for the generation of the puncta, and the puncta remain resistant to overexpression of enzymes that metabolize phosphatidic acid, suggesting that this lipid is trapped in a latent compartment. Suppression of PA puncta requires the first 14 amino acids of Sei1p (Nterm), a domain that is also important for initiation of droplet assembly. Consistent with recent evidence that Ldb16p and Sei1p form a functional unit, the PA puncta phenotype in the ldb16Δ sei1Δ strain was rescued by human seipin. Moreover, PA puncta in the sei1Δ strain expressing Sei1p(ΔNterm) was suppressed by overexpression of Ldb16p, suggesting a functional interaction of Nterm with this protein. Overexpression of both Sei1p and Ldb16p, but not Sei1p alone, is sufficient to cause a large increase in droplet number. However, Ldb16p alone increases triacylglycerol accumulation in the ldb16Δ sei1Δ background. CONCLUSION: We hypothesize that seipin prevents formation of membranes with extreme curvature at endoplasmic reticulum/droplet junctions that would attract phosphatidic acid. While Ldb16p alone can affect triacylglycerol accumulation, proper droplet formation requires the collaboration of Sei1p and Ldb16.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicéridos/metabolismo , Transporte Biológico , Retículo Endoplásmico/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
J Biol Chem ; 287(5): 3123-37, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22134922

RESUMEN

Lipin-1 catalyzes the formation of diacylglycerol from phosphatidic acid. Lipin-1 mutations cause lipodystrophy in mice and acute myopathy in humans. It is heavily phosphorylated, and the yeast ortholog Pah1p becomes membrane-associated and active upon dephosphorylation by the Nem1p-Spo7p membrane complex. A mammalian ortholog of Nem1p is the C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly "dullard"), but its Spo7p-like partner is unknown, and the need for its existence is debated. Here, we identify the metazoan ortholog of Spo7p, TMEM188, renamed nuclear envelope phosphatase 1-regulatory subunit 1 (NEP1-R1). CTDNEP1 and NEP1-R1 together complement a nem1Δspo7Δ strain to block endoplasmic reticulum proliferation and restore triacylglycerol levels and lipid droplet number. The two human orthologs are in a complex in cells, and the amount of CTDNEP1 is increased in the presence of NEP1-R1. In the Caenorhabditis elegans embryo, expression of nematode CTDNEP1 and NEP1-R1, as well as lipin-1, is required for normal nuclear membrane breakdown after zygote formation. The expression pattern of NEP1-R1 and CTDNEP1 in human and mouse tissues closely mirrors that of lipin-1. CTDNEP1 can dephosphorylate lipins-1a, -1b, and -2 in human cells only in the presence of NEP1-R1. The nuclear fraction of lipin-1b is increased when CTDNEP1 and NEP1-R1 are co-expressed. Therefore, NEP1-R1 is functionally conserved from yeast to humans and functions in the lipin activation pathway.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Humanos , Proteínas de la Membrana/genética , Ratones , Membrana Nuclear/enzimología , Membrana Nuclear/genética , Proteínas Nucleares/genética , Fosfatidato Fosfatasa/genética , Proteína Fosfatasa 1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
8.
Microbiol Spectr ; 11(1): e0462522, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36598223

RESUMEN

During yeast stationary phase, a single spherical vacuole (lysosome) is created by the fusion of several small ones. Moreover, the vacuolar membrane is reconstructed into two distinct microdomains. Little is known, however, about how cells maintain vacuolar shape or regulate their microdomains. Here, we show that Fat1p, a fatty acyl coenzyme A (acyl-CoA) synthetase and fatty acid transporter, and not the synthetases Faa1p and Faa4p, is essential for vacuolar shape preservation, the development of vacuolar microdomains, and cell survival in stationary phase of the yeast Saccharomyces cerevisiae. Furthermore, Fat1p negatively regulates general autophagy in both log- and stationary-phase cells. In contrast, Fat1p promotes lipophagy, as the absence of FAT1 limits the entry of lipid droplets into the vacuole and reduces the degradation of liquid droplet (LD) surface proteins. Notably, supplementing with unsaturated fatty acids or overexpressing the desaturase Ole1p can reverse all aberrant phenotypes caused by FAT1 deficiency. We propose that Fat1p regulates stationary phase vacuolar morphology, microdomain differentiation, general autophagy, and lipophagy by controlling the degree of fatty acid saturation in membrane lipids. IMPORTANCE The ability to sense environmental changes and adjust the levels of cellular metabolism is critical for cell viability. Autophagy is a recycling process that makes the most of already-existing energy resources, and the vacuole/lysosome is the ultimate autophagic processing site in cells. Lipophagy is an autophagic process to select degrading lipid droplets. In yeast cells in stationary phase, vacuoles fuse and remodel their membranes to create a single spherical vacuole with two distinct membrane microdomains, which are required for yeast lipophagy. In this study, we discovered that Fat1p was capable of rapidly responding to changes in nutritional status and preserving cell survival by regulating membrane lipid saturation to maintain proper vacuolar morphology and the level of lipophagy in the yeast S. cerevisiae. Our findings shed light on how cells maintain vacuolar structure and promote the differentiation of vacuole surface microdomains for stationary-phase lipophagy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácidos Grasos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Autofagia , Proteínas de Transporte de Ácidos Grasos/metabolismo
9.
J Lipid Res ; 53(6): 1042-55, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22474068

RESUMEN

The most-severe form of congenital generalized lipodystrophy (CGL) is caused by mutations in BSCL2/seipin. Seipin is a homo-oligomeric integral membrane protein in the endoplasmic reticulum that concentrates at junctions with cytoplasmic lipid droplets (LDs). While null mutations in seipin are responsible for lipodystrophy, dominant mutations cause peripheral neuropathy and other nervous system pathologies. We first review the clinical aspects of CGL and the discovery of the responsible genetic loci. The structure of seipin, its normal isoforms, and mutations found in patients are then presented. While the function of seipin is not clear, seipin gene manipulation in yeast, flies, mice, and human cells has recently yielded a trove of information that suggests roles in lipid metabolism and LD assembly and maintenance. A model is presented that attempts to bridge these new data to understand the role of this fascinating protein.


Asunto(s)
Enfermedad , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Animales , Enfermedad/genética , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Regulación de la Expresión Génica , Humanos , Lipodistrofia Generalizada Congénita/genética , Lipodistrofia Generalizada Congénita/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Fenotipo
10.
Nat Struct Mol Biol ; 29(3): 194-202, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35210614

RESUMEN

Lipid droplets (LDs) form in the endoplasmic reticulum by phase separation of neutral lipids. This process is facilitated by the seipin protein complex, which consists of a ring of seipin monomers, with a yet unclear function. Here, we report a structure of S. cerevisiae seipin based on cryogenic-electron microscopy and structural modeling data. Seipin forms a decameric, cage-like structure with the lumenal domains forming a stable ring at the cage floor and transmembrane segments forming the cage sides and top. The transmembrane segments interact with adjacent monomers in two distinct, alternating conformations. These conformations result from changes in switch regions, located between the lumenal domains and the transmembrane segments, that are required for seipin function. Our data indicate a model for LD formation in which a closed seipin cage enables triacylglycerol phase separation and subsequently switches to an open conformation to allow LD growth and budding.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Gotas Lipídicas , Retículo Endoplásmico/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
J Cell Biol ; 173(5): 719-31, 2006 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-16735577

RESUMEN

Although peroxisomes oxidize lipids, the metabolism of lipid bodies and peroxisomes is thought to be largely uncoupled from one another. In this study, using oleic acid-cultured Saccharomyces cerevisiae as a model system, we provide evidence that lipid bodies and peroxisomes have a close physiological relationship. Peroxisomes adhere stably to lipid bodies, and they can even extend processes into lipid body cores. Biochemical experiments and proteomic analysis of the purified lipid bodies suggest that these processes are limited to enzymes of fatty acid beta oxidation. Peroxisomes that are unable to oxidize fatty acids promote novel structures within lipid bodies ("gnarls"), which may be organized arrays of accumulated free fatty acids. However, gnarls are suppressed, and fatty acids are not accumulated in the absence of peroxisomal membranes. Our results suggest that the extensive physical contact between peroxisomes and lipid bodies promotes the coupling of lipolysis within lipid bodies with peroxisomal fatty acid oxidation.


Asunto(s)
Estructuras Citoplasmáticas/metabolismo , Metabolismo de los Lípidos , Lípidos/fisiología , Peroxisomas/metabolismo , Acil-CoA Oxidasa/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Estructuras Citoplasmáticas/ultraestructura , Ácidos Grasos/metabolismo , Lípidos/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Estructura Molecular , Ácido Oléico/farmacología , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/ultraestructura , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
12.
Trends Cell Biol ; 31(11): 912-923, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34215489

RESUMEN

Seipin is a key protein in the assembly of cytoplasmic lipid droplets (cLDs) and their maintenance at endoplasmic reticulum (ER)-LD junctions; the absence of seipin results in generalized lipodystrophy. How seipin mediates LD dynamics and prevents lipodystrophy are not well understood. New evidence suggests that seipin attracts triglyceride monomers from the ER to sites of droplet formation. By contrast, seipin may not be directly involved in the assembly of nuclear LDs and may actually suppress their formation at a distance. Seipin promotes adipogenesis, but lipodystrophy may also involve postadipogenic effects. We hypothesize that among these are a cycle of runaway lipolysis and lipotoxicity caused by aberrant LDs, resulting in a depletion of fat stores and a failure of adipose and other cells to thrive.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Retículo Endoplásmico/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Gotas Lipídicas/metabolismo
13.
Biochemistry ; 49(50): 10747-55, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21062080

RESUMEN

Seipin is a transmembrane protein that resides in the endoplasmic reticulum and concentrates at junctions between the ER and cytosolic lipid droplets. Mutations in the human seipin gene, including the missense mutation A212P, lead to congenital generalized lipodystrophy (CGL), characterized by the lack of normal adipose tissue and accumulation of fat in liver and muscles. In both yeast and CGL patient fibroblasts, seipin is required for normal lipid droplet morphology; in its absence droplets appear to bud abnormally from the ER. Here we report the first purification and physical characterization of seipin. Yeast seipin is in a large discrete protein complex. Affinity purification demonstrated that seipin is the main if not exclusive protein in the complex. Detergent sucrose gradients in H(2)O, and D(2)O and gel filtration were used to determine the size of the seipin complex and account for detergent binding. Both seipin-myc13 (seipin fused to 13 tandem copies of the myc epitope) expressed from the endogenous promoter and overexpressed seipin-mCherry form ∼500 kDa proteins consisting of about 9 copies of seipin. The yeast orthologue of the human A212P allele forms only smaller complexes and is unstable; we hypothesize that this accounts for its null phenotype in humans. Seipin appears as a toroid by negative staining electron microscopy. We speculate that seipin plays at least a structural role in organizing droplets or in communication between droplets and ER.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatografía en Gel , Subunidades gamma de la Proteína de Unión al GTP/aislamiento & purificación , Humanos , Immunoblotting , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
14.
Proc Natl Acad Sci U S A ; 104(52): 20890-5, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18093937

RESUMEN

Lipodystrophy is a disorder characterized by a loss of adipose tissue often accompanied by severe hypertriglyceridemia, insulin resistance, diabetes, and fatty liver. It can be inherited or acquired. The most severe inherited form is Berardinelli-Seip Congenital Lipodystrophy Type 2, associated with mutations in the BSCL2 gene. BSCL2 encodes seipin, the function of which has been entirely unknown. We now report the identification of yeast BSCL2/seipin through a screen to detect genes important for lipid droplet morphology. The absence of yeast seipin results in irregular lipid droplets often clustered alongside proliferated endoplasmic reticulum (ER); giant lipid droplets are also seen. Many small irregular lipid droplets are also apparent in fibroblasts from a BSCL2 patient. Human seipin can functionally replace yeast seipin, but a missense mutation in human seipin that causes lipodystrophy, or corresponding mutations in the yeast gene, render them unable to complement. Yeast seipin is localized in the ER, where it forms puncta. Almost all lipid droplets appear to be on the ER, and seipin is found at these junctions. Therefore, we hypothesize that seipin is important for droplet maintenance and perhaps assembly. In addition to detecting seipin, the screen identified 58 other genes whose deletions cause aberrant lipid droplets, including 2 genes encoding proteins known to activate lipin, a lipodystrophy locus in mice, and 16 other genes that are involved in endosomal-lysosomal trafficking. The genes identified in our screen should be of value in understanding the pathway of lipid droplet biogenesis and maintenance and the cause of some lipodystrophies.


Asunto(s)
Retículo Endoplásmico/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/biosíntesis , Proteínas de Unión al GTP Heterotriméricas/biosíntesis , Lípidos/química , Lipodistrofia/metabolismo , Secuencia de Aminoácidos , Animales , Endosomas/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Prueba de Complementación Genética , Humanos , Lisosomas/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido
15.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32580210

RESUMEN

In this issue, Choudhary et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201910177) address the nature of the ER subdomain from which lipid droplets emanate and how several assembly proteins interact. Their data indicate that seipin/Nem1 marks these sites and provide a detailed working model for assembling the protein complex.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Proteínas de Saccharomyces cerevisiae , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Gotas Lipídicas/metabolismo , Proteínas Nucleares , Proteínas , Saccharomyces cerevisiae/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-31352131

RESUMEN

Lipid droplets (LDs) are ubiquitous organelles that store metabolic energy in the form of neutral lipids (typically triacylglycerols and steryl esters). Beyond being inert energy storage compartments, LDs are dynamic organelles that participate in numerous essential metabolic functions. Cells generate LDs de novo from distinct sub-regions at the endoplasmic reticulum (ER), but what determines sites of LD formation remains a key unanswered question. Here, we review the factors that determine LD formation at the ER, and discuss how they work together to spatially and temporally coordinate LD biogenesis. These factors include lipid synthesis enzymes, assembly proteins, and membrane structural requirements. LDs also make contact with other organelles, and these inter-organelle contacts contribute to defining sites of LD production. Finally, we highlight emerging non-canonical roles for LDs in maintaining cellular homeostasis during stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Animales , Ácidos Grasos/metabolismo , Homeostasis , Humanos
17.
J Lipid Res ; 50(11): 2148-56, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19696439

RESUMEN

Cytosolic lipid droplets were considered until recently to be rather inert particles of stored neutral lipid. Largely through proteomics is it now known that droplets are dynamic organelles and that they participate in several important metabolic reactions as well as trafficking and interorganellar communication. In this review, the role of droplets in metabolism in the yeast Saccharomyces cerevisiae, the fly Drosophila melanogaster, and several mammalian sources are discussed, particularly focusing on those reactions shared by these organisms. From proteomics and older work, it is clear that droplets are important for fatty acid and sterol biosynthesis, fatty acid activation, and lipolysis. However, many droplet-associated enzymes are predicted to span a membrane two or more times, which suggests either that droplet structure is more complex than the current model posits, or that there are tightly bound membranes, particularly derived from the endoplasmic reticulum, which account for the association of several of these proteins.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Animales , Citosol/metabolismo , Drosophila melanogaster/metabolismo , Ácidos Grasos/biosíntesis , Lipólisis , Saccharomyces cerevisiae/metabolismo , Esteroles/biosíntesis
18.
Dev Cell ; 51(5): 544-545, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794714

RESUMEN

Seipin is an ER protein important for the assembly of cytoplasmic lipid droplets. In this issue of Developmental Cell, Chung et al. (2019) show that a stable seipin-binding protein, LDAF1/promethin, functions with seipin by attracting triacylglycerol and then allowing this lipid to accumulate and partition into nascent droplets.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Gotas Lipídicas , Retículo Endoplásmico , Proteínas , Triglicéridos
19.
Dev Cell ; 44(1): 1-2, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29316437

RESUMEN

Reporting in this issue of Developmental Cell, Bersuker et al. (2018) adapt APEX technology to lipid droplets for a more accurate view of the droplet proteome and Prévost et al. (2018) provide important insights into the basis of droplet protein targeting that altogether extend the understanding of this organelle.


Asunto(s)
Gotas Lipídicas , Proteoma , Metabolismo de los Lípidos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA