Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(4): 1389-1398, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37831662

RESUMEN

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is an ultraorphan neurogenetic disease from the group of neurodegeneration with brain iron accumulation (NBIA) disorders. Here we report cross-sectional and longitudinal data to define the phenotype, to assess disease progression and to estimate sample sizes for clinical trials. We enrolled patients with genetically confirmed MPAN from the Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON) registry and cohort study, and from additional sites. Linear mixed-effect modelling (LMEM) was used to calculate annual progression rates for the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia (BAD) scale, Schwab and England Activities of Daily Living (SE-ADL) scale and the Pediatric Quality of Life Inventory (PedsQL). We investigated 85 MPAN patients cross-sectionally, with functional outcome data collected in 45. Median age at onset was 9 years and the median diagnostic delay was 5 years. The most common findings were gait disturbance (99%), pyramidal involvement (95%), dysarthria (90%), vision disturbances (82%), with all but dysarthria presenting early in the disease course. After 16 years with the disease, 50% of patients were wheelchair dependent. LMEM showed an annual progression rate of 4.5 points in total UPDRS. The total BAD scale score showed no significant progression over time. The SE-ADL scale and the patient- and parent-reported PedsQL showed a decline of 3.9%, 2.14 and 2.05 points, respectively. No patient subpopulations were identified based on longitudinal trajectories. Our cross-sectional results define the order of onset and frequency of symptoms in MPAN, which will inform the diagnostic process, help to shorten diagnostic delay and aid in counselling patients, parents and caregivers. Our longitudinal findings define the natural history of MPAN, reveal the most responsive outcomes and highlight the need for an MPAN-specific rating approach. Our sample size estimations inform the design of upcoming clinical trials.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Niño , Humanos , Disartria , Estudios de Cohortes , Actividades Cotidianas , Estudios Transversales , Diagnóstico Tardío , Calidad de Vida , Mutación/genética , Enfermedades Neurodegenerativas/genética , Fenotipo , Proteínas de la Membrana/genética , Membranas Mitocondriales
2.
Neuroimage ; 271: 119960, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36854351

RESUMEN

Proactive cognition brain models are mainstream nowadays. Within these, preparation is understood as an endogenous, top-down function that takes place prior to the actual perception of a stimulus and improves subsequent behavior. Neuroimaging has shown the existence of such preparatory activity separately in different cognitive domains, however no research to date has sought to uncover their potential similarities and differences. Two of these, often confounded in the literature, are Selective Attention (information relevance) and Perceptual Expectation (information probability). We used EEG to characterize the mechanisms that pre-activate specific contents in Attention and Expectation. In different blocks, participants were cued to the relevance or to the probability of target categories, faces vs. names, in a gender discrimination task. Multivariate Pattern (MVPA) and Representational Similarity Analyses (RSA) during the preparation window showed that both manipulations led to a significant, ramping-up prediction of the relevant or expected target category. However, classifiers trained with data from one condition did not generalize to the other, indicating the existence of unique anticipatory neural patterns. In addition, a Canonical Template Tracking procedure showed that there was stronger anticipatory perceptual reinstatement for relevance than for expectation blocks. Overall, the results indicate that preparation during attention and expectation acts through distinguishable neural mechanisms. These findings have important implications for current models of brain functioning, as they are a first step towards characterizing and dissociating the neural mechanisms involved in top-down anticipatory processing.


Asunto(s)
Mapeo Encefálico , Motivación , Humanos , Atención/fisiología , Cognición , Señales (Psicología)
3.
Neuroradiology ; 64(5): 875-886, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35212785

RESUMEN

PURPOSE: To perform a review of the physical basis of DTI and DCE-MRI applied to Peripheral Nerves (PNs) evaluation with the aim of providing readers the main concepts and tools to acquire these types of sequences for PNs assessment. The potential added value of these advanced techniques for pre-and post-surgical PN assessment is also reviewed in diverse clinical scenarios. Finally, a brief introduction to the promising applications of Artificial Intelligence (AI) for PNs evaluation is presented. METHODS: We review the existing literature and analyze the latest evidence regarding DTI, DCE-MRI and AI for PNs assessment. This review is focused on a practical approach to these advanced sequences providing tips and tricks for implementing them into real clinical practice focused on imaging postprocessing and their current clinical applicability. A summary of the potential applications of AI algorithms for PNs assessment is also included. RESULTS: DTI, successfully used in central nervous system, can also be applied for PNs assessment. DCE-MRI can help evaluate PN's vascularization and integrity of Blood Nerve Barrier beyond the conventional gadolinium-enhanced MRI sequences approach. Both approaches have been tested for PN assessment including pre- and post-surgical evaluation of PNs and tumoral conditions. AI algorithms may help radiologists for PN detection, segmentation and characterization with promising initial results. CONCLUSION: DTI, DCE-MRI are feasible tools for the assessment of PN lesions. This manuscript emphasizes the technical adjustments necessary to acquire and post-process these images. AI algorithms can also be considered as an alternative and promising choice for PN evaluation with promising results.


Asunto(s)
Inteligencia Artificial , Imagen por Resonancia Magnética , Algoritmos , Humanos , Imagen por Resonancia Magnética/métodos , Nervios Periféricos/diagnóstico por imagen
4.
Inf Fusion ; 58: 153-167, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32284705

RESUMEN

Despite subjects with Dominantly-Inherited Alzheimer's Disease (DIAD) represent less than 1% of all Alzheimer's Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) initiative constitutes a strong impact in the understanding of AD disease course with special emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-effects models, have been assessed in the extant literature. Within this context, the work presented here performs a comparison between different groups of subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine Learning (ML). This involves a feature selection step which makes use of ANOVA followed by Principal Component Analysis (PCA) to determine which features would be realiable for further comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72-74% using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups including: a first group whose patterns were very close to NC subjects, and a second group much more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was determined both subgroups and a new classification scenario was conducted to validate this process. The comparison between each subgroup vs. NC subjects resulted in classification rates around 80% underscoring the importance of considering DIAN as an heterogeneous entity.

6.
Physiol Meas ; 45(5)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697206

RESUMEN

Objective.Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities.Approach.This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset's imbalance by conceptualizing diagnosis as a decision-making process.Main results.ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs.Significance.The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model's overall performance, underscoring the effectiveness of addressing these critical technical challenges.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Miocarditis , Miocarditis/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
7.
Neuroimage ; 65: 449-55, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23063448

RESUMEN

In this work, a linear procedure to perform the intensity normalization of FP-CIT SPECT brain images is presented. This proposed methodology is based on the fact that the histogram of intensity values can be fitted accurately using a positive skewed α-stable distribution. Then, the predicted α-stable parameters and the location-scale property are used to linearly transform the intensity values in each voxel. This transformation is performed such that the new histograms in each image have a pre-specified α-stable distribution with desired location and dispersion values. The proposed methodology is compared with a similar approach assuming Gaussian distribution and the widely used specific-to-nonspecific ratio. In this work, we show that the linear normalization method using the α-stable distribution outperforms those existing methods.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Humanos , Radiofármacos , Tropanos
8.
Int J Neural Syst ; 33(4): 2350019, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36800922

RESUMEN

The combination of different sources of information is currently one of the most relevant aspects in the diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities providing structural and functional information are frequently available. Those modalities are usually analyzed separately, although a joint of the features extracted from both sources can improve the classification performance of Computer-Aided Diagnosis (CAD) tools. Previous studies have computed independent models from each individual modality and combined them in a subsequent stage, which is not an optimum solution. In this work, we propose a method based on the principles of siamese neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). This framework quantifies the similarities between both modalities and relates them with the diagnostic label during the training process. The resulting latent space at the output of this network is then entered into an attention module in order to evaluate the relevance of each brain region at different stages of the development of Alzheimer's disease. The excellent results obtained and the high flexibility of the method proposed allow fusing more than two modalities, leading to a scalable methodology that can be used in a wide range of contexts.


Asunto(s)
Enfermedad de Alzheimer , Imagen Multimodal , Humanos , Imagen Multimodal/métodos , Neuroimagen/métodos , Redes Neurales de la Computación , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico por imagen
9.
Int J Neural Syst ; 33(3): 2350010, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36655400

RESUMEN

Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.

10.
Comput Biol Med ; 165: 107450, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37708717

RESUMEN

Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Reproducibilidad de los Resultados , Electroencefalografía , Emociones
11.
Cogn Neurodyn ; 17(6): 1501-1523, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37974583

RESUMEN

Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.

12.
Comput Biol Med ; 160: 106998, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37182422

RESUMEN

In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. At early stages, CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMRI) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians as each scan has many slices of data, and the contrast of it might be low. To address these issues, deep learning (DL) techniques have been employed in the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. The following presents research to detect CVDs using CMR images and the most significant DL methods. Another section discussed the challenges in diagnosing CVDs from CMRI data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. Finally, the most important findings of this study are presented in the conclusion section.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Aprendizaje Profundo , Humanos , Enfermedades Cardiovasculares/diagnóstico por imagen , Imagen por Resonancia Magnética , Corazón , Enfermedad de la Arteria Coronaria/diagnóstico
13.
Int J Neural Syst ; 33(4): 2350015, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36799660

RESUMEN

The prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that cannot be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paper-and-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper. There are a lot of scoring systems for this test and most of them depend on the subjective assessment of the expert. This study proposes a computer-aided diagnosis (CAD) system based on artificial intelligence (AI) methods to analyze the CDT and obtain an automatic diagnosis of cognitive impairment (CI). This system employs a preprocessing pipeline in which the clock is detected, centered and binarized to decrease the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN) to identify the informative patterns within the CDT drawings that are relevant for the assessment of the patient's cognitive status. Performance is evaluated in a real context where patients with CI and controls have been classified by clinical experts in a balanced sample size of [Formula: see text] drawings. The proposed method provides an accuracy of [Formula: see text] in the binary case-control classification task, with an AUC of [Formula: see text]. These results are indeed relevant considering the use of the classic version of the CDT. The large size of the sample suggests that the method proposed has a high reliability to be used in clinical contexts and demonstrates the suitability of CAD systems in the CDT assessment process. Explainable artificial intelligence (XAI) methods are applied to identify the most relevant regions during classification. Finding these patterns is extremely helpful to understand the brain damage caused by CI. A validation method using resubstitution with upper bound correction in a machine learning approach is also discussed.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Inteligencia Artificial , Reproducibilidad de los Resultados , Disfunción Cognitiva/diagnóstico , Pruebas Neuropsicológicas
14.
BMC Med Inform Decis Mak ; 12: 79, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22849649

RESUMEN

BACKGROUND: Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS: It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS: Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS: All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Análisis de Componente Principal , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Inteligencia Artificial , Interpretación Estadística de Datos , Diagnóstico Precoz , Femenino , Neuroimagen Funcional/métodos , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Radiofármacos , Sensibilidad y Especificidad , España , Tomografía Computarizada de Emisión de Fotón Único
15.
Sensors (Basel) ; 12(5): 5791-814, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22778613

RESUMEN

Determination of (in)activity periods when monitoring human body motion is a mandatory preprocessing step in all human inertial navigation and position analysis applications. Distinction of (in)activity needs to be established in order to allow the system to recompute the calibration parameters of the inertial sensors as well as the Zero Velocity Updates (ZUPT) of inertial navigation. The periodical recomputation of these parameters allows the application to maintain a constant degree of precision. This work presents a comparative study among different well known inertial magnitude-based detectors and proposes a new approach by applying spectrum-based detectors and memory-based detectors. A robust statistical comparison is carried out by the use of an accelerometer and angular rate signal synthesizer that mimics the output of accelerometers and gyroscopes when subjects are performing basic activities of daily life. Theoretical results are verified by testing the algorithms over signals gathered using an Inertial Measurement Unit (IMU). Detection accuracy rates of up to 97% are achieved.

16.
Comput Methods Programs Biomed ; 214: 106549, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34910975

RESUMEN

BACKGROUND AND OBJECTIVE: The study of brain function has recently expanded from classical univariate to multivariate analyses. These multivariate, machine learning-based algorithms afford neuroscientists extracting more detailed and richer information from the data. However, the implementation of these procedures is usually challenging, especially for researchers with no coding experience. To address this problem, we have developed MVPAlab, a MATLAB-based, flexible decoding toolbox for multidimensional electroencephalography and magnetoencephalography data. METHODS: The MVPAlab Toolbox implements several machine learning algorithms to compute multivariate pattern analyses, cross-classification, temporal generalization matrices and feature and frequency contribution analyses. It also provides access to an extensive set of preprocessing routines for, among others, data normalization, data smoothing, dimensionality reduction and supertrial generation. To draw statistical inferences at the group level, MVPAlab includes a non-parametric cluster-based permutation approach. RESULTS: A sample electroencephalography dataset was compiled to test all the MVPAlab main functionalities. Significant clusters (p<0.01) were found for the proposed decoding analyses and different configurations, proving the software capability for discriminating between different experimental conditions. CONCLUSIONS: This toolbox has been designed to include an easy-to-use and intuitive graphic user interface and data representation software, which makes MVPAlab a very convenient tool for users with few or no previous coding experience. In addition, MVPAlab is not for beginners only, as it implements several high and low-level routines allowing more experienced users to design their own projects in a highly flexible manner.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Algoritmos , Encéfalo , Aprendizaje Automático , Programas Informáticos
17.
Int J Neural Syst ; 32(3): 2250007, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34967705

RESUMEN

The automation in the diagnosis of medical images is currently a challenging task. The use of Computer Aided Diagnosis (CAD) systems can be a powerful tool for clinicians, especially in situations when hospitals are overflowed. These tools are usually based on artificial intelligence (AI), a field that has been recently revolutionized by deep learning approaches. These alternatives usually obtain a large performance based on complex solutions, leading to a high computational cost and the need of having large databases. In this work, we propose a classification framework based on sparse coding. Images are first partitioned into different tiles, and a dictionary is built after applying PCA to these tiles. The original signals are then transformed as a linear combination of the elements of the dictionary. Then, they are reconstructed by iteratively deactivating the elements associated with each component. Classification is finally performed employing as features the subsequent reconstruction errors. Performance is evaluated in a real context where distinguishing between four different pathologies: control versus bacterial pneumonia versus viral pneumonia versus COVID-19. Our system differentiates between pneumonia patients and controls with an accuracy of 97.74%, whereas in the 4-class context the accuracy is 86.73%. The excellent results and the pioneering use of sparse coding in this scenario evidence that our proposal can assist clinicians when their workload is high.


Asunto(s)
Inteligencia Artificial , COVID-19 , Diagnóstico por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , SARS-CoV-2
18.
Int J Neural Syst ; 32(5): 2250019, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35313792

RESUMEN

Spatial normalization helps us to compare quantitatively two or more input brain scans. Although using an affine normalization approach preserves the anatomical structures, the neuroimaging field is more common to find works that make use of nonlinear transformations. The main reason is that they facilitate a voxel-wise comparison, not only when studying functional images but also when comparing MRI scans given that they fit better to a reference template. However, the amount of bias introduced by the nonlinear transformations can potentially alter the final outcome of a diagnosis especially when studying functional scans for neurological disorders like Parkinson's Disease. In this context, we have tried to quantify the bias introduced by the affine and the nonlinear spatial registration of FP-CIT SPECT volumes of healthy control subjects and patients with PD. For that purpose, we calculated the deformation fields of each participant and applied these deformation fields to a 3D-grid. As the space between the edges of small cubes comprising the grid change, we can quantify which parts from the brain have been enlarged, compressed or just remain the same. When the nonlinear approach is applied, scans from PD patients show a region near their striatum very similar in shape to that of healthy subjects. This artificially increases the interclass separation between patients with PD and healthy subjects as the local intensity is decreased in the latter region, and leads machine learning systems to biased results due to the artificial information introduced by these deformations.


Asunto(s)
Enfermedad de Parkinson , Tropanos , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos
19.
Comput Biol Med ; 146: 105554, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569333

RESUMEN

Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed that SZ affects the temporal and anterior lobes of hippocampus regions of the brain. Also, increased volume of cerebrospinal fluid (CSF) and decreased volume of white and gray matter can be observed due to this disease. Magnetic resonance imaging (MRI) is the popular neuroimaging technique used to explore structural/functional brain abnormalities in SZ disorder, owing to its high spatial resolution. Various artificial intelligence (AI) techniques have been employed with advanced image/signal processing methods to accurately diagnose SZ. This paper presents a comprehensive overview of studies conducted on the automated diagnosis of SZ using MRI modalities. First, an AI-based computer aided-diagnosis system (CADS) for SZ diagnosis and its relevant sections are presented. Then, this section introduces the most important conventional machine learning (ML) and deep learning (DL) techniques in the diagnosis of diagnosing SZ. A comprehensive comparison is also made between ML and DL studies in the discussion section. In the following, the most important challenges in diagnosing SZ are addressed. Future works in diagnosing SZ using AI techniques and MRI modalities are recommended in another section. Results, conclusion, and research findings are also presented at the end.


Asunto(s)
Esquizofrenia , Adolescente , Adulto , Inteligencia Artificial , Encéfalo , Sustancia Gris , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología
20.
Front Mol Neurosci ; 15: 999605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267703

RESUMEN

Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA