Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Chromosomes Cancer ; 57(4): 176-181, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29218853

RESUMEN

Sarcomas account for 3% of all uterine malignancies and many of them are characterized by acquired, specific fusion genes whose detection has increased pathogenetic knowledge and diagnostic precision. We describe a novel fusion gene, GREB1-NCOA2, detected by transcriptome sequencing and validated by reverse transcriptase polymerase chain reaction and Sanger sequencing in an undifferentiated uterine sarcoma. The chimeric transcript was an in-frame fusion between exon 3 of GREB1 and exon 15 of NCOA2. The fusion is reported here for the first time, but it involves the GREB1 gene, an important promoter of tumor growth and progression, and NCOA2 which is known to be involved in transcriptional regulation. The alteration and recombination of these genes played a role in the tumorigenesis and/or progression of this sarcoma.


Asunto(s)
Proteínas de Neoplasias/genética , Coactivador 2 del Receptor Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Sarcoma/genética , Neoplasias Uterinas/genética , Secuencia de Bases , Cromosomas Humanos Par 2 , Cromosomas Humanos Par 8 , Femenino , Humanos , Hibridación Fluorescente in Situ , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Translocación Genética
2.
Genes Chromosomes Cancer ; 56(12): 841-845, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28758277

RESUMEN

We present a new endometrial stromal sarcoma (ESS)-associated genomic rearrangement involving chromosome arms 5p and 6p and leading to the formation of a BRD8-PHF1 fusion gene. The PHF1 (PHD finger protein 1) gene, from 6p21, is known to be rearranged in ESS in a promiscuous way inasmuch as it has been shown to recombine with JAZF1, EPC1, MEAF6, and now also with BRD8, in tumors of this type. In all rearrangements of PHF1, including the present one, a recurrent theme is that the entire coding part of PHF1 constitutes the 3' end of the fusion. BRD8 (bromodomain containing 8) encodes a protein which is involved in regulation of protein acetylation and/or histone acetyl transferase activity. All the genetic fusions identified so far in ESS appear to recombine genes involved in transcriptional regulation, that is, polycomb group complex-mediated and aberrant methylation/acetylation genes. This adds to the likelihood that the new BRD8-PHF1 shares the same pathogenetic mechanism as the other ESS-specific rearrangements.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias Endometriales/genética , Proteínas de Fusión Oncogénica/genética , Proteínas del Grupo Polycomb/genética , Receptores de Hormona Tiroidea/genética , Sarcoma Estromático Endometrial/genética , Células Cultivadas , Cromosomas Humanos Par 5/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias Endometriales/patología , Femenino , Humanos , Persona de Mediana Edad , Fusión de Oncogenes , Proteínas de Fusión Oncogénica/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Sarcoma Estromático Endometrial/patología , Factores de Transcripción
3.
Genes Chromosomes Cancer ; 55(11): 834-46, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27219024

RESUMEN

Recent cytogenetic and molecular investigations have improved our understanding of endometrial stromal tumors, including sarcomas (ESS), and helped redefine their classification into more pathogenetically meaningful categories. Because much more can be gained through such studies, we add information on another 22 ESS examined by karyotyping, PCR analysis, expression array analysis, and transcriptome sequencing. In spite of the known preference for certain pathogenetic pathways, we found considerable genetic heterogeneity in high-grade (HG) as well as in low-grade (LG) ESS. Not all HG tumors showed a YWHAE-NUTM chimeric transcript and as many as six LGESS showed no hitherto known ESS-related fusions. Among the transcripts identified by transcriptome sequencing and verified by Sanger sequencing, new variants of ZC3H7-BCOR and its reciprocal BCOR-ZC3H7 were identified as was involvement of the CREBBP and MLLT4 genes (both well known leukemia-related genes) in two new fusions. FISH analysis identified a known EPC1-PHF1 fusion which led to the identification of a new variant at the molecular level. The fact that around 70 genes were found differentially expressed, by microarray analysis, when comparing LGESS showing ESS-related fusions with LGESS without such transcripts, underscores the biochemical importance of the observed genetic heterogeneity and hints that new subgroups/entities in LGESS still remain undiscovered. © 2016 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.


Asunto(s)
Citogenética , Heterogeneidad Genética , Sarcoma Estromático Endometrial/patología , Transcriptoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Clasificación del Tumor , Sarcoma Estromático Endometrial/clasificación , Sarcoma Estromático Endometrial/genética
4.
Genes Chromosomes Cancer ; 55(12): 944-953, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27401149

RESUMEN

We have previously identified two ALK rearrangements in a subset of ependymal tumors using a combination of cytogenetic data and RNA sequencing. The aim of this study was to perform an unbiased search for fusion transcripts in our entire series of ependymal tumors. Fusion analysis was performed using the FusionCatcher algorithm on 12 RNA-sequenced ependymal tumors. Candidate transcripts were prioritized based on the software's filtering and manual visualization using the BLAST (Basic Local Alignment Search Tool) and BLAT (BLAST-like alignment tool) tools. Genomic and reverse transcriptase PCR with subsequent Sanger sequencing was used to validate the potential fusions. Fluorescent in situ hybridization (FISH) using locus-specific probes was also performed. A total of 841 candidate chimeric transcripts were identified in the 12 tumors, with an average of 49 unique candidate fusions per tumor. After algorithmic and manual filtering, the final list consisted of 24 potential fusion events. Raw RNA-seq read sequences and PCR validation supports two novel fusion genes: a reciprocal fusion gene involving UQCR10 and C1orf194 in an adult spinal ependymoma and a TSPAN4-CD151 fusion gene in a pediatric infratentorial anaplastic ependymoma. Our previously reported ALK rearrangements and the RELA and YAP1 fusions found in supratentorial ependymomas were until now the only known fusion genes present in ependymal tumors. The chimeric transcripts presented here are the first to be reported in infratentorial or spinal ependymomas. Further studies are required to characterize the genomic rearrangements causing these fusion genes, as well as the frequency and functional importance of the fusions. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Ependimoma/genética , Proteínas de Fusión Oncogénica/genética , Adulto , Anciano , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Ependimoma/clasificación , Ependimoma/patología , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Programas Informáticos , Tasa de Supervivencia , Tetraspanina 24/genética , Tetraspaninas/genética
5.
Mod Pathol ; 29(11): 1415-1423, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27469327

RESUMEN

Leiomyomas of the gastrointestinal tract are mostly found in the esophagus, stomach, and colon. Genetic information about them is very limited and no fusion genes have been described. We present herein cytogenetic and molecular genetic analyses of two gastrointestinal leiomyomas found in the esophagus and small intestine. The esophageal leiomyoma had the karyotype 45,Y,der(X)t(X;6)(p22;p21),inv(2)(p23q35),add(6)(p21),-11[cp6]/46,XY[7]. The intestinal leiomyoma karyotype was 46,X,add(X)(q2?),der(2)add(2)(p23)add(2)(q33),add(4)(p14),add(14)(q22)[10]/47,XX,+12[2]/46,XX[1]. RNA-sequencing detected FN1-ALK fusion transcripts in both tumors. RT-PCR together with Sanger sequencing verified the presence of the FN1-ALK fusion transcripts. Fluorescence in situ hybridization using an ALK breakapart probe further confirmed the rearrangement of the ALK gene. Immunohistochemical investigation of ALK in the leiomyoma of the small intestine revealed positivity with strong granular cytoplasmatic staining in the tumor cells. This is the first ever ALK fusion reported in gastrointestinal leiomyomas. Our results are of potential clinical importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients whose tumors harbor ALK rearrangements. Thus, ALK emerges as a possible therapeutic target in patients whose tumors, including gastrointestinal leiomyomas, carry ALK fusions.


Asunto(s)
Fibronectinas/genética , Neoplasias Gastrointestinales/genética , Leiomioma/genética , Proteínas Tirosina Quinasas Receptoras/genética , Adulto , Quinasa de Linfoma Anaplásico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Recurrencia
6.
Genes Chromosomes Cancer ; 52(8): 733-40, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23630070

RESUMEN

Mesothelioma is a rare but very aggressive tumor derived from mesothelial cells. A number of often complex but nonrandom cytogenetic abnormalities have been found in these tumors, resulting in loss of chromosome bands 14q32 and 22q12 in more than 35% of the cases. In this study, we used RNA sequencing to search for fusion transcripts in a mesothelioma carrying a t(14;22)(q32;q12) as the sole chromosomal aberration and found an EWSR1-YY1 and its reciprocal YY1-EWSR1 fusion transcript. Screening 15 additional cases of mesothelioma from which we had RNA but no cytogenetic information, we identified one more tumor carrying an EWSR1-YY1 fusion gene but not the reciprocal YY1-EWSR1 transcript. RT-polymerase chain reaction and sequencing showed that in both cases exon 8 of EWSR1 (nucleotide 1,139, accession number NM_013986 version 3, former exon 7 in sequence with accession number X66899) was fused to exon 2 of YY1 (nucleotide 1,160, accession number NM_003403 version 3). The EWSR1 breakpoint in exon 8 in the EWSR1-YY1 chimeric transcript is similar to what is found in other fusions involving EWSR1 such as EWSR1-FLI1, EWSR1-DDIT3, and EWSR1-ATF1. The EWSR1-YY1-encoded protein is an abnormal transcription factor with the transactivation domain of EWSR1 and the DNA-binding domain of YY1. This is the first study to detect a specific fusion gene in mesothelioma (the reason how frequent the EWSR1-YY1 fusion is remains uncertain) and also the first time that direct involvement of YY1 in oncogenesis has been demonstrated.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Mesotelioma/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Unión al ARN/genética , Factor de Transcripción YY1/genética , Adulto , Anciano , Proteínas de Unión a Calmodulina/aislamiento & purificación , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 22/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Mesotelioma/patología , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/aislamiento & purificación , Proteína EWS de Unión a ARN , Proteínas de Unión al ARN/aislamiento & purificación , Análisis de Secuencia de ARN , Translocación Genética , Factor de Transcripción YY1/aislamiento & purificación
7.
Genes Chromosomes Cancer ; 52(7): 610-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23580382

RESUMEN

Endometrial stromal sarcomas (ESS) are genetically heterogeneous uterine tumors in which a JAZF1-SUZ12 chimeric gene resulting from the chromosomal translocation t(7;17)(p15;q21) as well as PHF1 rearrangements (in chromosomal band 6p21) with formation of JAZF1-PHF1, EPC1-PHF1, and MEAF6-PHF1 chimeras have been described. Here, we investigated two ESS characterized cytogenetically by the presence of a der(22)t(X;22)(p11;q13). Whole transcriptome sequencing one of the tumors identified a ZC3H7-BCOR chimeric transcript. Reverse transciptase-PCR with the ZC3H7B forward and BCOR reverse primer combinations confirmed the presence of a ZC3H7-BCOR chimeric transcript in both ESS carrying a der(22)t(X;22) but not in a control ESS with t(1;6) and the MEAF6-PHF1 fusion. Sequencing of the amplified cDNA fragments showed that in both cases ESS exon 10 of ZC3H7B (from 22q13; accession number NM_017590 version 4) was fused to exon 8 of BCOR (from Xp11; accession number NM_001123385 version 1). Reciprocal multiple BCOR-ZC3H7B cDNA fragments were amplified in only one case suggesting that ZC3H7B-BCOR, on the der(22)t(X;22), is the pathogenetically important fusion gene. The putative ZC3H7B-BCOR protein would contain the tetratricopeptide repeats and LD motif from ZC3H7B and the AF9 binding site (1093-1233aa), the 3 ankyrin repeats (1410-1509 aa), and the NSPC1 binding site of BCOR. Although the presence of these motifs suggests various functions of the chimeric protein, it is possible that its most important role may be in epigenetic regulation. Whether or not the (patho)genetic subsets JAZF1-SUZ12, PHF1 rearrangements, and ZC3H7B-BCOR correspond to any phenotypic, let alone clinically important, differences in ESS remain unknown.


Asunto(s)
Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Sarcoma Estromático Endometrial/genética , Translocación Genética , Adulto , Cromosomas Humanos Par 22/genética , Cromosomas Humanos X/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Humanos , Hibridación Fluorescente in Situ , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/aislamiento & purificación , Sarcoma Estromático Endometrial/etiología , Sarcoma Estromático Endometrial/patología , Translocación Genética/genética
8.
Cancer Genomics Proteomics ; 21(3): 252-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670591

RESUMEN

BACKGROUND/AIM: The term "calcified chondroid mesenchymal neoplasm" was introduced in 2021 to describe a group of tumors characterized by various morphological features, including the formation of cartilage or chondroid matrix. These tumors frequently carry chimeric genes where the 5'-end partner gene is fibronectin 1 and the 3'-end partner gene codes for receptor tyrosine kinase. Our study explores fusion of the genes platelet-derived growth factor receptor alpha (PDGFRA) and ubiquitin-specific peptidase 8 (USP8) in calcified chondroid mesenchymal neoplasm. CASE REPORT: Genetic investigations were conducted on a tumor located in the leg of a 71-year-old woman. G-banding analysis of short-term cultured tumor cells revealed the karyotype 46,XX,t(4;15)(q12;q21)[6]/46,XX[4]. RNA sequencing detected in-frame PDGFRA::USP8 and USP8::PDGFRA chimeric transcripts, which were validated by RT-PCR/Sanger sequencing. The PDGFRA::USP8 chimeric protein is predicted to have cell membrane location and functions as a chimeric ubiquitinyl hydrolase. The USP8::PDGFRA protein was predicted to be nuclear and function as a positive regulator of cellular metabolic process. CONCLUSION: We report, for the first time, a calcified chondroid mesenchymal neoplasm carrying a balanced t(4;15)(q12;q21) chromosomal translocation, resulting in the generation of both PDGFRA::USP8 and USP8::PDGFRA chimeras. The PDGFRA::USP8 protein is located on the cell membrane and functions as a chimeric ubiquitinyl hydrolase, activated by PDGFs. Conversely, USP8::PDGFRA is a nuclear protein regulating metabolic processes.


Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Humanos , Femenino , Anciano , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Translocación Genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Calcinosis/genética , Calcinosis/patología , Cromosomas Humanos Par 4/genética
9.
In Vivo ; 37(6): 2459-2463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905608

RESUMEN

BACKGROUND/AIM: Chondrogenic tumors are benign, intermediate or malignant neoplasms showing cartilaginous differentiation. In 2012, we reported a mesenchymal chondrosarcoma carrying a t(1;5)(q42;q32) leading to an IRF2BP2::CDX1 fusion gene. Here, we report a second chondrogenic tumor carrying an IRF2BP2::CDX1 chimera. CASE REPORT: Radiological examination of a 41 years old woman showed an osteolytic lesion in the os pubis with a large soft tissue component. Examination of a core needle biopsy led to the diagnosis chondromyxoid fibroma, and the patient was treated with curettage. Microscopic examination of the specimen showed a tumor tissue in which a pink-bluish background matrix was studded with small spindled to stellate cells without atypia, fitting well the chondromyxoid fibroma diagnosis. Focally, a more cartilage-like appearance was observed with cells lying in lacunae and areas with calcification. G-banding analysis of short-term cultured tumor cells yielded the karyotype 46,XX,der(1)inv(1)(p33~34q42) add(1)(p32)?ins(1;?)(q42;?),del(5)(q31),der(5)t(1;5)(q42;q35)[12]/46,XX[3]. RT-PCR together with Sanger sequencing showed the presence of two IRF2BP2::CDX1 chimeric transcripts in which exon 1 of the IRF2BP2 reference sequence NM_182972.3 or NM_001077397.1 was fused to exon 2 of CDX1. Both chimeras were predicted to code for proteins containing the zinc finger domain of IRF2BP2 and homeobox domain of CDX1. CONCLUSION: IRF2BP2::CDX1 chimera is recurrent in chondrogenic tumors. The data are still too sparse to conclude whether it is a hallmark of benign or malignant tumors.


Asunto(s)
Neoplasias Óseas , Fibroma , Femenino , Humanos , Adulto , Genes Homeobox , Factor 2 Regulador del Interferón/genética , Proteínas de Homeodominio/genética , Exones , Células Tumorales Cultivadas , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
10.
In Vivo ; 37(2): 524-530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881074

RESUMEN

BACKGROUND/AIM: Lipomas are benign tumors composed of mature fat cells. They are common soft tissue tumors that often carry chromosome aberrations involving 12q14 resulting in rearrangements, deregulation, and generation of chimeras of the high-mobility group AT-hook 2 gene (HMGA2) which maps in 12q14.3. In the present study, we report the finding of t(9;12)(q33;q14) translocation in lipomas and describe its molecular consequences. MATERIALS AND METHODS: Four lipomas from two male and two female adult patients were selected because their neoplastic cells carried a t(9;12)(q33;q14) as the sole karyotypic aberration. The tumors were investigated using RNA sequencing, reverse transcription polymerase chain reaction (RT-PCR), and Sanger sequencing techniques. RESULTS: RNA sequencing of a t(9;12)(q33;q14)-lipoma detected an in-frame fusion of HMGA2 with the gelsolin gene (GSN) from 9q33. RT-PCR together with Sanger sequencing confirmed the presence of an HMGA2::GSN chimera in the tumor as well as in two other tumors from which RNA was available. The chimera was predicted to code for an HMGA2::GSN protein which would contain the three AT-hook domains of HMGA2 and the entire functional part of GSN. CONCLUSION: t(9;12)(q33;q14) is a recurrent cytogenetic aberration in lipomas and generates an HMGA2::GSN chimera. Similar to what is seen in other rearrangements of HMGA2 in mesenchymal tumors, the translocation physically separates the part of HMGA2 encoding AT-hook domains from the gene's 3'-terminal part which contains elements that normally regulate HMGA2 expression.


Asunto(s)
Lipoma , Translocación Genética , Adulto , Femenino , Humanos , Masculino , Aberraciones Cromosómicas , Gelsolina/genética , Reordenamiento Génico
11.
Cancer Genomics Proteomics ; 20(2): 171-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36870688

RESUMEN

BACKGROUND/AIM: Structural abnormalities of chromosome bands 8q11-13, resulting in rearrangement of the pleomorphic adenoma gene 1 (PLAG1), are known to characterize lipoblastoma, a benign fat cell tumor, found mainly in children. Here, we describe 8q11-13 rearrangements and their molecular consequences on PLAG1 in 7 lipomatous tumors in adults. MATERIALS AND METHODS: The patients were 5 males and 2 females between 23 and 62 years old. The tumors, namely five lipomas, one fibrolipoma and one spindle cell lipoma, were examined using G-banding with karyotyping, fluorescence in situ hybridization (FISH; three tumors), RNA sequencing, reverse transcription (RT) PCR, and Sanger sequencing analyses (two tumors). RESULTS: All 7 tumors had karyotypic aberrations which included rearrangements of chromosome bands 8q11-13 (the criterion for selection into this study). FISH analyses with a PLAG1 break apart probe showed abnormal hybridization signals in both interphase nuclei and on metaphase spreads indicating PLAG1 rearrangement. RNA sequencing detected fusion between exon 1 of heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) and exon 2 or 3 of PLAG1 in a lipoma and fusion between exon 2 of syndecan binding protein (SDCBP) and exon 2 or 3 of PLAG1 in a spindle cell lipoma. The HNRNPA2B1::PLAG1 and SDCBP::PLAG1 fusion transcripts were confirmed using RT-PCR/Sanger sequencing analyses. CONCLUSION: As 8q11-13 aberrations/PLAG1-rearrangements/PLAG1-chimeras may evidently be a defining pathogenetic feature of lipogenic neoplasms of several histological types and not just lipoblastomas, we suggest that the term "8q11-13/PLAG1-rearranged lipomatous tumors" be generally adopted for this tumor subset.


Asunto(s)
Lipoma , Humanos , Femenino , Masculino , Hibridación Fluorescente in Situ , Exones , Adipocitos , Núcleo Celular , Sinteninas , Proteínas de Unión al ADN
12.
In Vivo ; 37(1): 57-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593014

RESUMEN

BACKGROUND/AIM: CIC-sarcomas are characterized by rearrangements of the capicua transcriptional repressor (CIC) gene on chromosome subband 19q13.2, generating chimeras in which CIC is the 5'-end partner. Most reported CIC-sarcomas have been detected using PCR amplifications together with Sanger sequencing, high throughput sequencing, and fluorescence in situ hybridization (FISH). Only a few CIC-rearranged tumors have been characterized cytogenetically. Here, we describe the cytogenetic and molecular genetic features of a CIC-sarcoma carrying a t(10;19)(q26;q13), a chromosomal rearrangement not previously detected in such neoplasms. MATERIALS AND METHODS: A round cell sarcoma removed from the right thigh of a 57-year-old man was investigated by G-banding cytogenetics, FISH, PCR and Sanger sequencing. RESULTS: The tumor cells had three cytogenetically related clones with the translocations t(9;18)(q22;q21) and t(10;19)(q26;q13) common to all of them. FISH with a BAC probe containing the CIC gene hybridized to the normal chromosome 19, to der(10)t(10;19), and to der(19)t(10;19). PCR using tumor cDNA as template together with Sanger sequencing detected two CIC::DUX4 fusion transcripts which both had a stop TAG codon immediately after the fusion point. Both transcripts are predicted to encode truncated CIC polypeptides lacking the carboxy terminal part of the native protein. This missing part is crucial for CIC's DNA binding capacity and interaction with other proteins. CONCLUSION: In addition to demonstrating that CIC rearrangement in sarcomas can occur via the microscopically visible translocation t(10;19)(q26;q13), the findings in the present case provide evidence that the missing part in CIC-truncated proteins has important functions whose loss may be important in tumorigenesis.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Translocación Genética , Hibridación Fluorescente in Situ , Proteínas de Fusión Oncogénica/genética , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Biomarcadores de Tumor/genética
13.
JCO Precis Oncol ; 7: e2200351, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724411

RESUMEN

PURPOSE: Adjuvant imatinib treatment is recommended for patients with localized gastrointestinal stromal tumor (GIST) at high risk of recurrence. Almost half of high-risk patients are cured by surgery alone, indicating a need for improved selection of patients for adjuvant therapy. The aim of this study was to investigate if genomic tumor complexity could be used as a prognostic biomarker. METHODS: The discovery cohort consisted of patients who underwent resection of primary GIST at Oslo University Hospital between 1998 and 2020. Karyotypes were categorized as simple if they had ≤ 5 chromosomal changes and complex if there were > 5 chromosomal aberrations. Validation was performed in an independent patient cohort where chromosomal imbalances were mapped using comparative genomic hybridization. RESULTS: Chromosomal aberrations were detected in 206 tumors, of which 76 had a complex karyotype. The most frequently observed changes were losses at 14q, 22q, 1p, and 15q. The 5-year recurrence-free survival (RFS) in patients classified as very low, low, or intermediate risk was 99%. High-risk patients with a simple tumor karyotype had an estimated 5-year RFS of 94%, and patients with a complex karyotype had an estimated 5-year RFS of 51%. A complex karyotype was associated with poor RFS in patients with and without adjuvant imatinib treatment and in multivariable analysis adjusted for tumor site, size, mitotic count, and rupture. The prognostic impact of genomic complexity was confirmed in the validation cohort. In both cohorts, the 5-year disease-specific survival was > 90% for high-risk patients with genomically simple tumors. CONCLUSION: Genomic tumor complexity is an independent prognostic biomarker in localized, high-risk GIST. Recurrences were infrequent for tumors with simple karyotypes. De-escalation of adjuvant imatinib treatment should be explored in patients with cytogenetically simple GISTs.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/uso terapéutico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Hibridación Genómica Comparativa , Quimioterapia Adyuvante , Biomarcadores , Genómica , Aberraciones Cromosómicas/inducido químicamente
14.
Cancer Genomics Proteomics ; 20(6): 556-566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37889065

RESUMEN

BACKGROUND/AIM: Angioleiomyoma is a benign tumor, occurs at any age, and arises most frequently in the lower extremities. Genetic information on angioleiomyomas is restricted to six reported abnormal karyotypes, losses in chromosome 22 and gains in Xq found by comparative genomic hybridization, and mutation analysis of notch receptor 2 (NOTCH2), NOTCH3, platelet-derived growth factor receptor beta (PDGFRB), and mediator complex subunit 12 (MED12) in a few tumors. Herein, we report the genetic findings in another three angioleiomyomas. MATERIALS AND METHODS: The tumors were examined using G-banding and karyotyping, RNA sequencing, reverse transcription-polymerase chain reaction, Sanger sequencing, and expression analysis. RESULTS: The first tumor carried a t(4;5)(p12;q32) translocation resulting in fusion of the cardiac mesoderm enhancer-associated non-coding RNA (CARMN in 5q32) with the TXK tyrosine kinase gene (TXK in 4p12) leading to overexpression of TXK. To our knowledge, this is the first time that a recurrent chromosome translocation and its resulting fusion gene have been described in angioleiomyomas. The second tumor carried a four-way translocation, t(X;3;4;16)(q22;p11;q11;p13) which fused the myosin heavy chain 11 gene (MYH11 in 16p13) with intergenic sequences from Xq22 that mapped a few kilobase pairs distal to the insulin receptor substrate 4 gene (IRS4), resulting in enhanced IRS4 expression. The third angioleiomyoma carried another rearrangement of chromosome band Xq22, t(X;9)(q22;q32), as the sole cytogenetic aberration, but no material was available for further molecular investigation. CONCLUSION: Our data, together with previously reported abnormal karyotypes in angioleiomyomas, show the presence of two recurrent genetic pathways in this tumor type: The first is characterized by presence of the translocation t(4;5)(p12;q32), which generates a CARMN::TXK chimera. The second is recurrent rearrangement of Xq22 resulting in overexpression of IRS4.


Asunto(s)
Angiomioma , Humanos , Angiomioma/genética , Hibridación Genómica Comparativa , Aberraciones Cromosómicas , Translocación Genética , Factores de Transcripción , Cariotipo Anormal
15.
Cancer Genomics Proteomics ; 20(4): 363-374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37400148

RESUMEN

BACKGROUND/AIM: Mesotheliomas are tumors similar to, and probably derived from, mesothelial cells. They carry acquired chromosomal rearrangements, deletions affecting CDKN2A, pathogenetic polymorphisms in NF2, and fusion genes which often contain the promiscuous EWSR1, FUS, and ALK as partner genes. Here, we report the cytogenomic results on two peritoneal mesotheliomas. MATERIALS AND METHODS: Both tumors were examined using G-banding with karyotyping and array comparative genomic hybridization (aCGH). One of them was further investigated with RNA sequencing, reverse transcription polymerase chain reaction (RT-PCR), Sanger sequencing, and fluorescence in situ hybridization (FISH). RESULTS: In the first mesothelioma, the karyotype was 25∼26,X,+5,+7,+20[cp4]/50∼52,idemx2[cp7]/46,XX[2]. aCGH detected gains of chromosomes 5, 7, and 20 with retained heterozygosity on these chromosomes. In the second tumor, the karyotype was 46,XX,inv(10)(p11q25)[7]/46,XX[3]. aCGH did not detect any gains or losses and showed heterozygosity for all chromosomes. RNA sequencing, RT-PCR/Sanger sequencing, and FISH showed that the inv(10) fused MAP3K8 from 10p11 with ABLIM1 from 10q25. The MAP3K8::ABLIM1 chimera lacked exon 9 of MAP3K8. CONCLUSION: Our data, together with information on previously described mesotheliomas, illustrate two pathogenetic mechanisms in peritoneal mesothelioma: One pathway is characterized by hyperhaploidy, but with retained disomies for chromosomes 5, 7, and 20; this may be particularly prevalent in biphasic mesotheliomas. The second pathway is characterized by rearrangements of MAP3K8 from which exon 9 of MAP3K8 is lost. The absence of exon 9 from oncogenetically rearranged MAP3K8 is a common theme in thyroid carcinoma, lung cancer, and spitzoid as well as other melanoma subtypes.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias Peritoneales , Humanos , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Mesotelioma/genética , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/metabolismo , Proteínas de Microfilamentos/genética , Proteínas con Dominio LIM/genética
16.
Genes Chromosomes Cancer ; 50(10): 788-99, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21717527

RESUMEN

The pathogenesis of pediatric central nervous system tumors is poorly understood. To increase knowledge about the genetic mechanisms underlying these tumors, we performed genome-wide screening of 17 pediatric gliomas and embryonal tumors combining G-band karyotyping and array comparative genomic hybridization (aCGH). G-banding revealed abnormal karyotypes in 56% of tumor samples (9 of 16; one failed in culture), whereas aCGH found copy number aberrations in all 13 tumors examined. Pilocytic astrocytomas (n = 3) showed normal karyotypes or nonrecurrent translocations by karyotyping but the well-established recurrent gain of 7q34 and 19p13.3 by aCGH. Our series included one anaplastic oligoastrocytoma, a tumor type not previously characterized genomically in children, and one anaplastic neuroepithelial tumor (probably an oligoastrocytoma); both showed loss of chromosome 14 by G-banding and structural aberrations of 6q and loss of 14q, 17p, and 22q by aCGH. Three of five supratentorial primitive neuroectodermal tumors showed aberrant karyotypes: two were near-diploid with mainly structural changes and one was near-triploid with several trisomies. aCGH confirmed these findings and revealed additional recurrent gains of 1q21-44 and losses of 3p21, 3q26, and 8p23. We describe cytogenetically for the first time a cribriform neuroepithelial tumor, a recently identified variant of atypical teratoid/rhabdoid tumor with a favorable prognosis, which showed loss of 1p33, 4q13.2, 10p12.31, 10q11.22, and 22q by aCGH. This study indicates the existence of distinct cytogenetic patterns in pediatric gliomas and embryonal tumors; however, further studies of these rare tumors using a multimodal approach are required before their true genomic aberration pattern can be finally established.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Aberraciones Cromosómicas , Tumores Neuroectodérmicos Primitivos/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/embriología , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Bandeo Cromosómico , Hibridación Genómica Comparativa , Análisis Citogenético , Femenino , Genoma Humano , Genómica , Humanos , Hibridación Fluorescente in Situ , Incidencia , Lactante , Cariotipificación , Masculino , Tumores Neuroectodérmicos Primitivos/diagnóstico , Tumores Neuroectodérmicos Primitivos/embriología , Tumores Neuroectodérmicos Primitivos/epidemiología , Tumores Neuroectodérmicos Primitivos/patología , Noruega , Estudios Prospectivos
17.
Genes Chromosomes Cancer ; 50(6): 409-20, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21412929

RESUMEN

The current classification of diffuse low-grade gliomas is based mainly on histopathological criteria, which cannot accurately predict the highly variable clinical course observed in patients with such tumors. In an attempt to increase pathogenetic understanding of these tumors, we investigated 38 WHO Grade II astrocytomas, oligodendrogliomas, and oligoastrocytomas using a combination of G-band chromosome analysis and high-resolution comparative genomic hybridization (HR-CGH). Abnormal karyotypes were found in 41% of tumors. Karyotypes of astrocytomas and oligodendrogliomas were near-diploid whereas oligoastrocytomas also displayed near-tetraploid clones. The most common aberrations were losses of chromosomes X, Y, 3, 4, 6, and 11 and gains of chromosomes 8 and 12. The only recurrent structural rearrangement was del(6)(q21). HR-CGH analysis verified karyotyping findings but also revealed frequent losses at 1p, 17q, and 19q and gains of 7q, 10p, 11q, and 20p. Among the tumors were two gemistocytic astrocytomas, a subgroup of diffuse astrocytomas with a particular predisposition for progression but not studied cytogenetically before; one showed a near-diploid, complex karyotype with structural aberrations of chromosomes 1, 3, and 11 whereas both displayed simple aberrations including loss of 11p by HR-CGH. Our findings suggest that within diffuse low-grade gliomas are genetically distinct entities that do not fit the currently used classification. In addition, tumors with complex chromosomal aberrations had a higher tendency for aggressive tumor behavior (shorter progression-free survival) than tumors displaying simple aberrations only (P = 0.07). This could help identify genetic subsets of patients with low-grade glioma who might benefit from early antineoplastic therapy.


Asunto(s)
Astrocitoma/genética , Astrocitoma/patología , Aberraciones Cromosómicas , Glioma/genética , Glioma/patología , Adulto , Astrocitoma/clasificación , Hibridación Genómica Comparativa , Supervivencia sin Enfermedad , Femenino , Glioma/clasificación , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Adulto Joven
18.
Cancer Genomics Proteomics ; 19(2): 163-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35181586

RESUMEN

BACKGROUND/AIM: Chimeras involving the high-mobility group AT-hook 2 gene (HMGA2 in 12q14.3) have been found in lipomas and other benign mesenchymal tumors. We report here a fusion of HMGA2 with the nuclear receptor co-repressor 2 gene (NCOR2 in 12q24.31) repeatedly found in tumors of bone and the first cytogenetic investigation of this fusion. MATERIALS AND METHODS: Six osteoclastic giant cell-rich tumors were investigated using G-banding, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization. RESULTS: Four tumors had structural chromosomal aberrations of 12q. The pathogenic variant c.103_104GG>AT (p.Gly35Met) in the H3.3 histone A gene was found in a tumor without 12q aberration. In-frame HMGA2-NCOR2 fusion transcripts were found in all tumors. In two cases, the presence of an HMGA2-NCOR2 fusion gene was confirmed by FISH on metaphase spreads. CONCLUSION: Our results demonstrate that a subset of osteoclastic giant cell-rich tumors of bone are characterized by an HMGA2-NCOR2 fusion gene.


Asunto(s)
Neoplasias Óseas , Fusión Génica , Tumores de Células Gigantes , Proteína HMGA2 , Lipoma , Co-Represor 2 de Receptor Nuclear , Osteoclastos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Tumores de Células Gigantes/genética , Tumores de Células Gigantes/patología , Células Gigantes/patología , Proteína HMGA2/genética , Humanos , Hibridación Fluorescente in Situ , Lipoma/genética , Lipoma/patología , Co-Represor 2 de Receptor Nuclear/genética , Osteoclastos/patología
19.
In Vivo ; 36(6): 2654-2661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36309352

RESUMEN

BACKGROUND/AIM: The translocation t(9;12) (p22;q14~15) has been reported in lipomas, pleomorphic adenomas, a myolipoma, two chondroid hamartomas, and two uterine leiomyomas. In lipomas and pleomorphic adenomas, the translocation fuses HMGA2 (12q14) with the NFIB gene from 9p22; in myolipoma, it fuses HMGA2 with C9orf92 from 9p22; and in chondroid hamartomas, fluorescence in situ hybridization (FISH) investigations showed the chromosomal aberration to cause intragenic rearrangement of HMGA2. The translocation's molecular consequence in a uterine leiomyoma is described here. MATERIALS AND METHODS: A typical leiomyoma was investigated using banding cytogenetics, FISH, RNA sequencing, reverse transcription polymerase chain reaction and Sanger sequencing. RESULTS: A single translocation, t(9;12)(p22;q14) leading to an HMGA2::BNC2 chimera, was found in tumor cells. A sequence of the untranslated part of exon 5 of HMGA2 (nucleotide 1035 in the NCBI reference sequence NM_003483.4) had fused with a sequence from the untranslated part of exon 7 of BNC2 from 9p22 (nucleotide 9284 in reference sequence NM_017637.6). CONCLUSION: At the molecular level, the t(9;12)(p22;q14~15) found in several benign tumors appears to be heterogeneous fusing HMGA2 with either BNC2, C9orf92 or NFIB which all three map close to one another within a 3 Mbp region in 9p22. Because the fusion point in HMGA2 in the present tumor lays downstream from the first Let-7 miRNA consensus binding site, we conclude that deletion of the first Let-7 miRNA binding site is not important for the transcriptional upregulation of HMGA2 caused by the genomic rearrangement.


Asunto(s)
Hamartoma , Leiomioma , Lipoma , MicroARNs , Humanos , Hibridación Fluorescente in Situ , Leiomioma/genética , Lipoma/patología , Translocación Genética , Aberraciones Cromosómicas , Hamartoma/genética , Nucleótidos , Proteínas de Unión al ADN/genética
20.
Cancer Genomics Proteomics ; 19(5): 576-583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35985684

RESUMEN

BACKGROUND/AIM: Aggressive angiomyxomas are mostly found in the pelvic and perineal region and are prone to recur after surgery. Cytogenetic information is available on only nine such tumors. Herein, we report the cytogenetic anomaly and its molecular consequence in another aggressive angiomyxoma. MATERIALS AND METHODS: An aggressive angiomyxoma found in a 33-year-old woman was examined using cytogenetic, RNA sequencing, reverse transcription polymerase chain reaction (RT-PCR), and Sanger sequencing techniques. RESULTS: The karyotype of short-term cultured tumor cells was 46,XX,del(12) (q14q23)[9]/46,XX[2]. RNA sequencing detected fusion of the high mobility group AT-hook 2 gene (HMGA2) with the chromosome 12 open reading frame 42 gene (C12orf42). RT-PCR together with Sanger sequencing verified the presence of an HMGA2::C12orf42 fusion transcript. CONCLUSION: The present case carrying del(12)(q14q23) and an HMGA2::C12orf42 chimeric transcript strengthens the notion that involvement of HMGA2 and its misexpression are pathogenetically important in the development of aggressive angiomyxomas.


Asunto(s)
Cromosomas Humanos Par 12 , Mixoma , Adulto , Aberraciones Cromosómicas , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Mixoma/genética , Mixoma/patología , Mixoma/cirugía , Sistemas de Lectura Abierta , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA