Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rev Med Virol ; 33(5): e2470, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392370

RESUMEN

Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Humanos , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/prevención & control , Calidad de Vida , Virus de la Encefalitis Transmitidos por Garrapatas/genética , ARN , Salud Pública
2.
J Infect Dis ; 225(8): 1452-1459, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33668071

RESUMEN

BACKGROUND: The optimal method for delivering phages in the context of ventilator-associated pneumonia (VAP) is unknown. In the current study, we assessed the utility of aerosolized phages (aerophages) for experimental methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. METHODS: Rats were ventilated for 4 hours before induction of pneumonia. Animals received one of the following: (1) aerophages; (2) intravenous (IV) phages; (3) a combination of IV and aerophages; (4) IV linezolid; or (5) a combination of IV linezolid and aerophages. Phages were administered at 2, 12, 24, 48, and 72 hours, and linezolid was administered at 2, 12, 24, 36, 48, 60, and 72 hours. The primary outcome was survival at 96 hours. Secondary outcomes were bacterial and phage counts in tissues and histopathological scoring of the lungs. RESULTS: Aerophages and IV phages each rescued 50% of animals from severe MRSA pneumonia (P < .01 compared with placebo controls). The combination of aerophages and IV phages rescued 91% of animals, which was higher than either monotherapy (P < .05). Standard-of-care antibiotic linezolid rescued 38% of animals. However, linezolid and aerophages did not synergize in this setting (55% survival). CONCLUSIONS: Aerosolized phage therapy showed potential for the treatment of MRSA pneumonia in an experimental animal model and warrants further investigation for application in humans.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Neumonía Asociada al Ventilador , Animales , Linezolid/uso terapéutico , Neumonía Estafilocócica/microbiología , Neumonía Asociada al Ventilador/tratamiento farmacológico , Ratas
3.
Stroke ; 52(3): 1043-1052, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33504186

RESUMEN

BACKGROUND AND PURPOSE: Endovascular aneurysm treatment relies on a biological process, including cell migration for thrombus organization and growth of a neointima. To better understand aneurysm healing, our study explores the origin of neointima-forming and thrombus-organizing cells in a rat saccular sidewall aneurysm model. METHODS: Saccular aneurysms were transplanted onto the abdominal aorta of male Lewis rats and endovascularly treated with coils (n=28) or stents (n=26). In 34 cases, GFP+ (green fluorescent protein)-expressing vital aneurysms were sutured on wild-type rats, and in 23 cases, decellularized wild-type aneurysms were sutured on GFP+ rats. Follow-up at 3, 7, 14, 21, and 28 days evaluated aneurysms by fluorescence angiography, macroscopic inspection, and microscopy for healing and inflammation status. Furthermore, the origin of cells was tracked with fluorescence histology. RESULTS: In animals with successful functional healing, histological studies showed a gradually advancing thrombus organization over time characterized by progressively growing neointima from the periphery of the aneurysm toward the center. Cell counts revealed similar distributions of GFP+ cells for coil or stent treatment in the aneurysm wall (54.4% versus 48.7%) and inside the thrombus (20.5% versus 20.2%) but significantly more GFP+ cells in the neointima of coiled (27.2 %) than stented aneurysms (10.4%; P=0.008). CONCLUSIONS: Neointima formation and thrombus organization are concurrent processes during aneurysm healing. Thrombus-organizing cells originate predominantly in the parent artery. Neointima formation relies more on cell migration from the aneurysm wall in coiled aneurysms but receives greater contributions from cells originating in the parent artery in stent-treated aneurysms. Cell migration, which allows for a continuous endothelial lining along the parent artery's lumen, may be a prerequisite for complete aneurysm healing after endovascular therapy. In terms of translation into clinical practice, these findings may explain the variability in achieving complete aneurysm healing after coil treatment and the improved healing rate in stent-assisted coiling.


Asunto(s)
Aneurisma de la Aorta Abdominal/terapia , Neointima/patología , Stents , Animales , Aneurisma de la Aorta Abdominal/patología , Arterias/patología , Implantación de Prótesis Vascular , Movimiento Celular , Embolización Terapéutica , Procedimientos Endovasculares , Proteínas Fluorescentes Verdes/metabolismo , Aneurisma Intracraneal/terapia , Masculino , Neointima/terapia , Ratas , Ratas Endogámicas Lew , Trombosis/patología
4.
Parasite Immunol ; 43(8): e12834, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33754355

RESUMEN

BACKGROUND: Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) immune checkpoint blockade are efficacious in certain cancer therapies. OBJECTIVES: The present study aimed to provide a picture about the development of innate and adaptive immune responses upon PD-L1 blockade in treating chronic murine AE. METHODS: Immune treatment started at 6 weeks post-E. multilocularis infection, and was maintained for 8 weeks with twice per week anti-PD-L1 administration (intraperitoneal). The study included an outgroup-control with mice perorally medicated with albendazole 5 d/wk, and another one with both treatments combined. Assessment of treatment efficacy was based on determining parasite weight, innate and adaptive immune cell profiles, histopathology and liver tissue cytokine levels. RESULTS/CONCLUSIONS: Findings showed that the parasite load was significantly reduced in response to PD-L1 blockade, and this blockade (a) contributed to T-cell activity by increasing CD4+ /CD8+ effector T cells, and decreasing Tregs; (b) had the capacity to restore DCs and Kupffer cells/Macrophages; (c) suppressed NKT and NK cells; and thus (d) lead to an improved control of E. multilocularis infection in mice. This study suggests that the PD-L1 pathway plays an important role by regulating adaptive and innate immune cells against E. multilocularis infection, with significant modulation of tissue inflammation.


Asunto(s)
Antígeno B7-H1 , Equinococosis , Animales , Linfocitos T CD8-positivos , Inmunidad , Ratones , Receptor de Muerte Celular Programada 1
5.
Pharmacology ; 106(1-2): 3-8, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32739918

RESUMEN

INTRODUCTION: The E. multilocularis laminated layer (LL) is a heavily glycosylated parasitic structure that plays an important role in protecting the larval stage (metacestode) of this parasite from physiological and immunological host reactions. We elaborated an experimental design with the idea to modify the (glycan) surface of the LL by a targeted digestion. This should allow the host defense to more easily recognize and attack (or kill) the parasite by immune-mediated effects. METHODS: Experimentally, E. multilocularis (clone H95) metacestodes were cultured in vitro with or without addition of α1-3,4,6-galactosidase or ß1-3-galactosidase in the medium. Morphological changes were subsequently measured by microscopy at different time points. Parasites were then recovered at day 5 and reinjected into mice for assessing their viability and infectious status. For finally recovered parasites, the respective load was assessed ex vivo by wet weight measurement, and host-related PD1 and IL-10 levels were determined as the key immunoregulators by using flow cytometry. RESULTS: Our experiments demonstrated that the parasite vesicular structure can be directly destroyed by adding galactosidases into the in vitro culture system, resulting in the fact that the parasite metacestode vesicles could not anymore infect and develop in mice after this glycan digestion. Moreover, when compared to the mice inoculated with E. multilocularis metacestode without galactosidases, PD1 expression was upregulated in CD4+ Teffs from mice inoculated with E. multilocularis metacestode pretreated with ß1-3-galactosidase, with a lower IL-10 secretion from CD4+ Teffs; there was no difference of PD1 and IL-10 expression levels regarding CD4+ Teff from mice inoculated with E. multilocularis metacestode pretreated with α1-3,4,6-galac-tosidase. DISCUSSION: We raised our hypothesis that this "aborting" effect may be linked to an altered PD1 and IL-10 response fine-tuning between immunopathology and immune protection. These findings justify a continuation of these experiments upon therapeutical in vivo administration of the enzymes.


Asunto(s)
Equinococosis/terapia , Echinococcus multilocularis/química , Echinococcus multilocularis/efectos de los fármacos , Galactosidasas/farmacología , Azúcares/química , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Medios de Cultivo , Equinococosis/parasitología , Echinococcus multilocularis/inmunología , Echinococcus multilocularis/ultraestructura , Femenino , Citometría de Flujo , Interleucina-10/inmunología , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía , Polisacáridos/química , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo
6.
J Neuroinflammation ; 17(1): 293, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028339

RESUMEN

BACKGROUND: Pneumococcal meningitis (PM) remains a global public health concern and affects all age groups. If acquired during infancy or childhood, permanent neurofunctional deficits including cognitive impairment, cerebral palsy, and secondary epilepsy are typical sequelae of neuronal injury. Determination of patients at risk for the development of brain injury and subsequent neurofunctional sequelae could help to identify patients for focused management. Neurofilament light chain (NfL) is an axonal cytoskeletal protein released upon neuronal injury into the cerebrospinal fluid (CSF) and blood. As little is known about the course of neurofilament release in the course of PM, we measured CSF and serum NfL levels longitudinally in experimental PM (ePM). METHODS: Eleven-day-old infant Wistar rats were infected intracisternally with Streptococcus pneumoniae and treated with ceftriaxone. At 18 and 42 h post-infection (hpi), the blood and CSF were sampled for NfL measurements by a single molecule array technology. Inflammatory cytokines and MMP-9 in CSF were quantified by magnetic bead multiplex assay (Luminex®) and by gel zymography, respectively. RESULTS: In ePM, CSF and serum NfL levels started to increase at 18 hpi and were 26- and 3.5-fold increased, respectively, compared to mock-infected animals at 42 hpi (p < 0.0001). CSF and serum NfL correlated at 18 hpi (p < 0.05, r = 0.4716) and 42 hpi (p < 0.0001, r = 0.8179). Both CSF and serum NfL at 42 hpi strongly correlated with CSF levels of IL-1ß, TNF-α, and IL-6 and of MMP-9 depending on their individual kinetics. CONCLUSION: Current results demonstrate that during the peak inflammatory phase of ePM, NfL levels in CSF and serum are the highest among CNS disease models studied so far. Given the strong correlation of CSF versus serum NfL, and its CNS-specific signal character, longitudinal measurements to monitor the course of PM could be performed based on blood sample tests, i.e., without the need of repetitive spinal taps. We conclude that NfL in the serum should be evaluated as a biomarker in PM.


Asunto(s)
Lesiones Encefálicas/sangre , Lesiones Encefálicas/líquido cefalorraquídeo , Meningitis Neumocócica/sangre , Meningitis Neumocócica/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Animales , Animales Recién Nacidos , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Lesiones Encefálicas/patología , Femenino , Masculino , Meningitis Neumocócica/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Wistar , Streptococcus pneumoniae
7.
Crit Care Med ; 48(7): 1042-1046, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32304419

RESUMEN

OBJECTIVES: There is a need for alternative strategies to combat and prevent antibiotic-resistant bacterial infections. Here, we assessed the potential for bacteriophage prophylaxis in the context of experimental ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus in rats. DESIGN: Nebulized phages (aerophages) were delivered to the lungs of rats using a modified vibrating mesh aerosol drug delivery system. Animals were intubated and ventilated for 4 hours, at which point they were infected with methicillin-resistant S. aureus strain AW7 via the endotracheal tube, extubated, and then monitored for 96 hours. SETTING: Ventilator-associated pneumonia. SUBJECTS: Male Wistar rats. INTERVENTIONS: A single application of aerophages prior to ventilation at one of two concentrations (~1010 plaque forming units/mL or ~1011 plaque forming units/mL). MEASUREMENTS AND MAIN RESULTS: 1) Animal survival at 96 hours, 2) enumeration of bacteria and phages in the lungs and spleen, and 3) lung tissue histopathology. Animals that received aerophages prior to ventilation and methicillin-resistant S. aureus challenge showed a higher survival rate compared with untreated controls (60% for animals that received 3 × 10 plaque forming units; 70% for animals that received 3 × 10 plaque forming units; 0% for controls; p < 0.01 for each treatment versus untreated). Surviving animals that received aerophage prophylaxis had fewer methicillin-resistant S. aureus in the lungs compared with untreated control animals that succumbed to pneumonia (1.6 × 10 colony forming units/g vs 8.0 × 10; p < 0.01). CONCLUSIONS: Prophylactically administered nebulized bacteriophages reduced lung bacterial burdens and improved survival of methicillin-resistant S. aureus infected rats, underscoring its potential in the context of ventilator-associated pneumonia.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Terapia de Fagos/métodos , Neumonía Estafilocócica/prevención & control , Neumonía Asociada al Ventilador/prevención & control , Aerosoles , Animales , Masculino , Nebulizadores y Vaporizadores/virología , Ratas , Ratas Wistar
8.
BMC Infect Dis ; 20(1): 505, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660552

RESUMEN

BACKGROUND: Meningococcal meningitis (MM) is a life-threatening disease associated with approximately 10% case fatality rates and neurological sequelae in 10-20% of the cases. Recently, we have shown that the matrix metalloproteinase (MMP) inhibitor BB-94 reduced brain injury in a mouse model of MM. The present study aimed to assess whether doxycycline (DOX), a tetracycline that showed a neuroprotective effect as adjuvant therapy in experimental pneumococcal meningitis (PM), would also exert a beneficial effect when given as adjunctive therapy to ceftriaxone (CRO) in experimental MM. METHODS: BALB/c mice were infected by the intracisternal route with a group C Neisseria meningitidis strain. Eighteen h post infection (hpi), animals were randomised for treatment with CRO [100 mg/kg subcutaneously (s.c.)], CRO plus DOX (30 mg/kg s.c.) or saline (control s.c.). Antibiotic treatment was repeated 24 and 40 hpi. Mouse survival and clinical signs, bacterial counts in cerebella, brain damage, MMP-9 and cyto/chemokine levels were assessed 48 hpi. RESULTS: Analysis of bacterial load in cerebella indicated that CRO and CRO + DOX were equally effective at controlling meningococcal replication. No differences in survival were observed between mice treated with CRO (94.4%) or CRO + DOX (95.5%), (p > 0.05). Treatment with CRO + DOX significantly diminished both the number of cerebral hemorrhages (p = 0.029) and the amount of MMP-9 in the brain (p = 0.046) compared to untreated controls, but not to CRO-treated animals (p > 0.05). Levels of inflammatory markers in the brain of mice that received CRO or CRO + DOX were not significantly different (p > 0.05). Overall, there were no significant differences in the parameters assessed between the groups treated with CRO alone or CRO + DOX. CONCLUSIONS: Treatment with CRO + DOX showed similar bactericidal activity to CRO in vivo, suggesting no antagonist effect of DOX on CRO. Combined therapy significantly improved mouse survival and disease severity compared to untreated animals, but addition of DOX to CRO did not offer significant benefits over CRO monotherapy. In contrast to experimental PM, DOX has no adjunctive activity in experimental MM.


Asunto(s)
Antibacterianos/uso terapéutico , Ceftriaxona/uso terapéutico , Doxiciclina/uso terapéutico , Meningitis Meningocócica/tratamiento farmacológico , Neisseria meningitidis Serogrupo C , Animales , Antibacterianos/administración & dosificación , Carga Bacteriana/efectos de los fármacos , Ceftriaxona/administración & dosificación , Hemorragia Cerebral/tratamiento farmacológico , Quimiocinas/análisis , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/administración & dosificación , Quimioterapia Combinada , Femenino , Humanos , Estimación de Kaplan-Meier , Metaloproteinasa 9 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/metabolismo , Meningitis Meningocócica/mortalidad , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Resultado del Tratamiento
9.
Cell Mol Life Sci ; 76(16): 3097-3116, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31172218

RESUMEN

Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.


Asunto(s)
Proteínas ADAM/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Esclerosis Múltiple/patología , Enfermedades del Sistema Nervioso/patología , Barrera Hematoencefálica/metabolismo , Citocinas/metabolismo , Humanos , Esclerosis Múltiple/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Transducción de Señal
10.
Am J Respir Crit Care Med ; 200(9): 1126-1133, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260638

RESUMEN

Rationale: Infections caused by multidrug-resistant bacteria are a major clinical challenge. Phage therapy is a promising alternative antibacterial strategy.Objectives: To evaluate the efficacy of intravenous phage therapy for the treatment of ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus in rats.Methods: In a randomized, blinded, controlled experimental study, we compared intravenous teicoplanin (3 mg/kg, n = 12), a cocktail of four phages (2-3 × 109 plaque-forming units/ml of 2003, 2002, 3A, and K; n = 12), and a combination of both (n = 11) given 2, 12, and 24 hours after induction of pneumonia, and then once daily for 4 days. The primary outcome was survival at Day 4. Secondary outcomes were bacterial and phage densities in lungs and spleen, histopathological scoring of infection within the lungs, and inflammatory biomarkers in blood.Measurements and Main Results: Treatment with either phages or teicoplanin increased survival from 0% to 58% and 50%, respectively (P < 0.005). The combination of phages and antibiotics did not further improve outcomes (45% survival). Animal survival correlated with reduced bacterial burdens in the lung (1.2 × 106 cfu/g of tissue for survivors vs. 1.2 × 109 cfu/g for nonsurviving animals; P < 0.0001), as well as improved histopathological outcomes. Phage multiplication within the lung occurred during treatment. IL-1ß increased in all treatment groups over the course of therapy.Conclusions: Phage therapy was as effective as teicoplanin in improving survival and decreasing bacterial load within the lungs of rats infected with methicillin-resistant S. aureus. Combining antibiotics with phage therapy did not further improve outcomes.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Terapia de Fagos , Neumonía Asociada al Ventilador/microbiología , Neumonía Asociada al Ventilador/terapia , Infecciones Estafilocócicas/terapia , Animales , Antibacterianos/uso terapéutico , Bacteriófagos , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Infecciones Estafilocócicas/microbiología , Teicoplanina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA