Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(11): 8168-8179, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36880275

RESUMEN

We report the existence in NaLa(SO4)2·H2O of a displacive phase transition under 200 K from the nonpolar P3121 to the polar P31 space group. This phase transition was predicted by density functional theory based calculations and experimentally confirmed from infrared spectroscopy and X-ray diffraction. The A2 polar irreducible representation is the primary order parameter. The structural water and hydrogen bonding are the mechanism driving the phase transition. The piezoelectric properties of this new P31 phase have been investigated by first principles based calculations. The highest piezoelectric-strain constants in the zero Kelvin limit are predicted for the d12 and d41 elements with values about 3.4 pC N-1. This compound could be interesting as piezoelectric actuator for cryogenic applications.

2.
Phys Rev Lett ; 109(3): 035701, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861870

RESUMEN

Freezing of water in hydrophilic nanopores (D=1.2 nm) is probed at the microscopic scale using x-ray diffraction, Raman spectroscopy, and molecular simulation. A freezing scenario, which has not been observed previously, is reported; while the pore surface induces orientational order of water in contact with it, water does not crystallize at temperatures as low as 173 K. Crystallization at the surface is suppressed as the number of hydrogen bonds formed is insufficient (even when including hydrogen bonds with the surface), while crystallization in the pore center is hindered as the curvature prevents the formation of a network of tetrahedrally coordinated molecules. This sheds light on the concept of an ubiquitous unfreezable water layer by showing that the latter has a rigid (i.e., glassy) liquidlike structure, but can exhibit orientational order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA