Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neuroeng Rehabil ; 17(1): 121, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883297

RESUMEN

BACKGROUND: Neuromuscular Electrical Stimulation (NMES) has been utilized for many years in cerebral palsy (CP) with limited success despite its inherent potential for improving muscle size and/or strength, inhibiting or reducing spasticity, and enhancing motor performance during functional activities such as gait. While surface NMES has been shown to successfully improve foot drop in CP and stroke, correction of more complex gait abnormalities in CP such as flexed knee (crouch) gait remains challenging due to the level of stimulation needed for the quadriceps muscles that must be balanced with patient tolerability and the ability to deliver NMES assistance at precise times within a gait cycle. METHODS: This paper outlines the design and evaluation of a custom, noninvasive NMES system that can trigger and adjust electrical stimulation in real-time. Further, this study demonstrates feasibility of one possible application for this digitally-controlled NMES system as a component of a pediatric robotic exoskeleton to provide on-demand stimulation to leg muscles within specific phases of the gait cycle for those with CP and other neurological disorders who still have lower limb sensation and volitional control. A graphical user interface was developed to digitally set stimulation parameters (amplitude, pulse width, and frequency), timing, and intensity during walking. Benchtop testing characterized system delay and power output. System performance was investigated during a single session that consisted of four overground walking conditions in a 15-year-old male with bilateral spastic CP, GMFCS Level III: (1) his current Ankle-Foot Orthosis (AFO); (2) unassisted Exoskeleton; (3) NMES of the vastus lateralis; and (4) NMES of the vastus lateralis and rectus femoris. We hypothesized in this participant with crouch gait that NMES triggered with low latency to knee extensor muscles during stance would have a modest but positive effect on knee extension during stance. RESULTS: The system delivers four channels of NMES with average delays of 16.5 ± 13.5 ms. Walking results show NMES to the vastus lateralis and rectus femoris during stance immediately improved mean peak knee extension during mid-stance (p = 0.003*) and total knee excursion (p = 0.009*) in the more affected leg. The electrical design, microcontroller software and graphical user interface developed here are included as open source material to facilitate additional research into digitally-controlled surface stimulation ( github.com/NIHFAB/NMES ). CONCLUSIONS: The custom, digitally-controlled NMES system can reliably trigger electrical stimulation with low latency. Precisely timed delivery of electrical stimulation to the quadriceps is a promising treatment for crouch. Our ultimate goal is to synchronize NMES with robotic knee extension assistance to create a hybrid NMES-exoskeleton device for gait rehabilitation in children with flexed knee gait from CP as well as from other pediatric disorders. TRIAL REGISTRATION: clinicaltrials.gov, ID: NCT01961557 . Registered 11 October 2013; Last Updated 27 January 2020.


Asunto(s)
Parálisis Cerebral/rehabilitación , Terapia por Estimulación Eléctrica/instrumentación , Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/rehabilitación , Diseño de Prótesis , Adolescente , Parálisis Cerebral/complicaciones , Trastornos Neurológicos de la Marcha/etiología , Humanos , Articulación de la Rodilla/fisiopatología , Masculino , Espasticidad Muscular/fisiopatología
2.
Sensors (Basel) ; 15(9): 23667-83, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26393592

RESUMEN

Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject's intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.


Asunto(s)
Costos y Análisis de Costo , Prueba de Esfuerzo/economía , Prueba de Esfuerzo/instrumentación , Movimiento (Física) , Aceleración , Biorretroalimentación Psicológica , Femenino , Humanos , Masculino , Encuestas y Cuestionarios , Caminata
3.
Front Hum Neurosci ; 18: 1346050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633751

RESUMEN

In the realm of motor rehabilitation, Brain-Computer Interface Neurofeedback Training (BCI-NFT) emerges as a promising strategy. This aims to utilize an individual's brain activity to stimulate or assist movement, thereby strengthening sensorimotor pathways and promoting motor recovery. Employing various methodologies, BCI-NFT has been shown to be effective for enhancing motor function primarily of the upper limb in stroke, with very few studies reported in cerebral palsy (CP). Our main objective was to develop an electroencephalography (EEG)-based BCI-NFT system, employing an associative learning paradigm, to improve selective control of ankle dorsiflexion in CP and potentially other neurological populations. First, in a cohort of eight healthy volunteers, we successfully implemented a BCI-NFT system based on detection of slow movement-related cortical potentials (MRCP) from EEG generated by attempted dorsiflexion to simultaneously activate Neuromuscular Electrical Stimulation which assisted movement and served to enhance sensory feedback to the sensorimotor cortex. Participants also viewed a computer display that provided real-time visual feedback of ankle range of motion with an individualized target region displayed to encourage maximal effort. After evaluating several potential strategies, we employed a Long short-term memory (LSTM) neural network, a deep learning algorithm, to detect the motor intent prior to movement onset. We then evaluated the system in a 10-session ankle dorsiflexion training protocol on a child with CP. By employing transfer learning across sessions, we could significantly reduce the number of calibration trials from 50 to 20 without compromising detection accuracy, which was 80.8% on average. The participant was able to complete the required calibration trials and the 100 training trials per session for all 10 sessions and post-training demonstrated increased ankle dorsiflexion velocity, walking speed and step length. Based on exceptional system performance, feasibility and preliminary effectiveness in a child with CP, we are now pursuing a clinical trial in a larger cohort of children with CP.

4.
Neuromuscul Disord ; 32(4): 321-331, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35305880

RESUMEN

Grip myotonia and weakness are attractive treatment response biomarkers in clinical trials of myotonic dystrophy type 1 (DM1). There is a need to develop simple, patient-friendly and reproducible methods of quantifying grip myotonia in multisite trial settings. We designed a HandClench Relaxometer (HCR) that measures grip myotonia and strength. In contrast with the existing quantitative myometry (QMA) setup, the HCR is portable, economical, can be used with any laptop and generates automated command prompts. We demonstrate the feasibility and reliability of HCR device in twenty DM1 individuals and ten age-matched controls; patients returned for follow up within two months. The device showed excellent day to day reproducibility (ICC >0.80) in patients. The HCR device detected myotonia in milder muscle disease and measured longer myotonia duration than QMA indicating enhanced sensitivity for quantifying myotonia in DM1. The reaction time to the relax but not squeeze command was delayed and showed warm up similar to myotonia in DM1. HCR outcomes were correlated with key pinch strength, hand dexterity test, and fat replacement in the MRI of the long finger flexor muscles. Use of the HCR is warranted for grip myotonia and strength measurements in longitudinal observational and interventional studies of DM1.


Asunto(s)
Miotonía , Distrofia Miotónica , Electromiografía , Fuerza de la Mano/fisiología , Humanos , Lactante , Miotonía/diagnóstico , Distrofia Miotónica/diagnóstico , Reproducibilidad de los Resultados
5.
IEEE Int Conf Rehabil Robot ; 2017: 1087-1093, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813966

RESUMEN

Effective rehabilitation of children with cerebral palsy (CP) requires intensive task-specific exercise but many in this population lack the motor capabilities to complete the desired training tasks. Providing robotic assistance is a potential solution yet the effects of this assistance are unclear. We combined a novel exoskeleton and exercise video game (exergame) to create a new rehabilitation paradigm for children with CP. We incorporated high density electroencephalography (EEG) to assess cortical activity. Movement to targets in the game was controlled by knee extension while standing. The distance between targets was the same with and without the exoskeleton to isolate the effect of robotic assistance. Our results show that children with CP maintain or increase knee extensor muscle activity during knee extension in the presence of synergistic robotic assistance. Our EEG findings also demonstrate that participants remained engaged in the exercise with robotic assistance. Interestingly we observed a developmental trajectory of sensorimotor mu rhythm in children with CP similar, though delayed, to those reported in typically developing children. While not the goal here, the exoskeleton significantly increased knee extension in 3/6 participants during use. Future work will focus on utilizing the exoskeleton to enhance volitional knee extension capability and in combination with EMG and EEG to study sensorimotor cortex response to progressive exercise in children with CP.


Asunto(s)
Parálisis Cerebral/rehabilitación , Dispositivo Exoesqueleto , Juegos de Video , Adulto , Fenómenos Biomecánicos , Encéfalo/fisiología , Niño , Preescolar , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Diseño de Equipo , Femenino , Humanos , Masculino , Adulto Joven
6.
IEEE Trans Neural Syst Rehabil Eng ; 25(6): 650-659, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27479974

RESUMEN

Crouch gait, a pathological pattern of walking characterized by excessive knee flexion, is one of the most common gait disorders observed in children with cerebral palsy (CP). Effective treatment of crouch during childhood is critical to maintain mobility into adulthood, yet current interventions do not adequately alleviate crouch in most individuals. Powered exoskeletons provide an untapped opportunity for intervention. The multiple contributors to crouch, including spasticity, contracture, muscle weakness, and poor motor control make design and control of such devices challenging in this population. To our knowledge, no evidence exists regarding the feasibility or efficacy of utilizing motorized assistance to alleviate knee flexion in crouch gait. Here, we present the design of and first results from a powered exoskeleton for extension assistance as a treatment for crouch gait in children with CP. Our exoskeleton, based on the architecture of a knee-ankle-foot orthosis, is lightweight (3.2 kg) and modular. On board sensors enable knee extension assistance to be provided during distinct phases of the gait cycle. We tested our device on one six-year-old male participant with spastic diplegia from CP. Our results show that the powered exoskeleton improved knee extension during stance by 18.1° while total knee range of motion improved 21.0°. Importantly, we observed no significant decrease in knee extensor muscle activity, indicating the user did not rely solely on the exoskeleton to extend the limb. These results establish the initial feasibility of robotic exoskeletons for treatment of crouch and provide impetus for continued investigation of these devices with the aim of deployment for long term gait training in this population.


Asunto(s)
Parálisis Cerebral/rehabilitación , Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/rehabilitación , Rehabilitación Neurológica/instrumentación , Robótica/instrumentación , Parálisis Cerebral/diagnóstico , Parálisis Cerebral/fisiopatología , Niño , Diseño de Equipo , Análisis de Falla de Equipo , Trastornos Neurológicos de la Marcha/diagnóstico , Humanos , Masculino , Sistemas Hombre-Máquina , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
7.
Rev Sci Instrum ; 86(1): 015101, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25638116

RESUMEN

Compression therapy has long been a standard treatment for hypertrophic scar prevention. However, due to the lack of objective, quantitative assessments, and measurements of scar severity, as well as the lack of a self-operated, controllable, and precise pressure delivery technique, limited concrete evidence exists, demonstrating compression therapy's efficacy. We have designed and built an automatic pressure delivery system to apply and maintain constant pressure on scar tissue in an animal model. A force sensor positioned on a compression plate reads the imposed force in real-time and sends the information to a feedback system controlling two position actuators. The actuators move accordingly to maintain a preset value of pressure onto the skin. The system was used in an in vivo model of compression therapy on hypertrophic scars. It was shown that the system was capable of delivering a constant pressure of 30 mmHg on scar wounds for a period of two weeks, and that phenotypic changes were seen in the wounds.


Asunto(s)
Cicatriz Hipertrófica/prevención & control , Equipos y Suministros Eléctricos , Presión , Animales , Automatización , Calibración , Modelos Animales de Enfermedad , Diseño de Equipo , Piel/lesiones , Resultado del Tratamiento , Tecnología Inalámbrica , Heridas y Lesiones/terapia
8.
Artículo en Inglés | MEDLINE | ID: mdl-24109827

RESUMEN

A self-paced treadmill that can simulate overground walking has the potential to improve the effectiveness of treadmill training for gait rehabilitation. We have implemented a self-paced treadmill without the need for expensive equipment such as a motion capture system and an instrumented treadmill. For this, an inexpensive depth sensor, ASUS XtionTM, substitutes for the motion capture system, and a low-cost commercial treadmill is considered as the platform of the self-paced treadmill. The proposed self-paced treadmill is also convenient because the depth sensor does not require markers placed on user's body. Through pilot tests with two healthy subjects, it is quantitatively and qualitatively verified that the proposed self-paced treadmill achieves similar performance as one which utilizes a commercial motion capture system (VICON) as well as an instrumented treadmill.


Asunto(s)
Percepción de Profundidad , Prueba de Esfuerzo/economía , Prueba de Esfuerzo/instrumentación , Tecnología Inalámbrica/economía , Tecnología Inalámbrica/instrumentación , Adulto , Biorretroalimentación Psicológica , Costos y Análisis de Costo , Femenino , Marcha , Voluntarios Sanos , Humanos , Masculino , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA