Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 30(1): 55-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24459009

RESUMEN

The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.


Asunto(s)
Amifostina/farmacología , Apoptosis/efectos de los fármacos , Traumatismos Experimentales por Radiación/prevención & control , Protectores contra Radiación/farmacología , Amifostina/administración & dosificación , Animales , Apoptosis/efectos de la radiación , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/patología , Protectores contra Radiación/administración & dosificación , Bazo/efectos de los fármacos , Bazo/patología , Bazo/efectos de la radiación
2.
iScience ; 25(12): 105546, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36465103

RESUMEN

During evolution, humans are acclimatized to the stresses of natural radiation and circadian rhythmicity. Radiosensitivity of mammalian cells varies in the circadian period and adaptive radioprotection can be induced by pre-exposure to low-level radiation (LDR). It is unclear, however, if clock proteins participate in signaling LDR radioprotection. Herein, we demonstrate that radiosensitivity is increased in mice with the deficient Period 2 gene (Per2def) due to impaired DNA repair and mitochondrial function in progenitor bone marrow hematopoietic stem cells and monocytes. Per2 induction and radioprotection are also identified in LDR-treated Per2wt mouse cells and in human skin (HK18) and breast (MCF-10A) epithelial cells. LDR-boosted PER2 interacts with pGSK3ß(S9) which activates ß-catenin and the LEF/TCF mediated gene transcription including Per2 and genes involved in DNA repair and mitochondrial functions. This study demonstrates that PER2 plays an active role in LDR adaptive radioprotection via PER2/pGSK3ß/ß-catenin/Per2 loop, a potential target for protecting normal cells from radiation injury.

3.
Crit Care Med ; 39(12): 2711-21, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21765345

RESUMEN

OBJECTIVES: To test the hypothesis that preconditioning animals with amifostine improves ventilator-induced lung injury via induction of antioxidant defense enzymes. Mechanical ventilation at high tidal volume induces reactive oxygen species production and oxidative stress in the lung, which plays a major role in the pathogenesis of ventilator-induced lung injury. Amifostine attenuates oxidative stress and improves lipopolysaccharide-induced lung injury by acting as a direct scavenger of reactive oxygen and nitrogen species. This study tested effects of chronic amifostine administration on parameters of oxidative stress, lung barrier function, and inflammation associated with ventilator-induced lung injury. DESIGN: Randomized and controlled laboratory investigation in mice and cell culture. SETTING: University laboratory. SUBJECTS: C57BL/6J mice. INTERVENTIONS: Mice received once-daily dosing with amifostine (10-100 mg/kg, intraperitoneal injection) 3 days consecutively before high tidal volume ventilation (30 mL/kg, 4 hrs) at day 4. Pulmonary endothelial cell cultures were exposed to pathologic cyclic stretching (18% equibiaxial stretch) and thrombin in a previously verified two-hit model of in vitro ventilator-induced lung injury. MEASUREMENTS AND MAIN RESULTS: Three-day amifostine preconditioning before high tidal volume attenuated high tidal volume-induced protein and cell accumulation in the alveolar space judged by bronchoalveolar lavage fluid analysis, decreased Evans Blue dye extravasation into the lung parenchyma, decreased biochemical parameters of high tidal volume-induced tissue oxidative stress, and inhibited high tidal volume-induced activation of redox-sensitive stress kinases and nuclear factor-kappa B inflammatory cascade. These protective effects of amifostine were associated with increased superoxide dismutase 2 expression and increased superoxide dismutase and catalase enzymatic activities in the animal and endothelial cell culture models of ventilator-induced lung injury. CONCLUSIONS: Amifostine preconditioning activates lung tissue antioxidant cell defense mechanisms and may be a promising strategy for alleviation of ventilator-induced lung injury in critically ill patients subjected to extended mechanical ventilation.


Asunto(s)
Amifostina/uso terapéutico , Depuradores de Radicales Libres/uso terapéutico , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Células Cultivadas , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Inflamación/tratamiento farmacológico , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Nat Commun ; 11(1): 4591, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929084

RESUMEN

Although the efficacy of cancer radiotherapy (RT) can be enhanced by targeted immunotherapy, the immunosuppressive factors induced by radiation on tumor cells remain to be identified. Here, we report that CD47-mediated anti-phagocytosis is concurrently upregulated with HER2 in radioresistant breast cancer (BC) cells and RT-treated mouse syngeneic BC. Co-expression of both receptors is more frequently detected in recurrent BC patients with poor prognosis. CD47 is upregulated preferentially in HER2-expressing cells, and blocking CD47 or HER2 reduces both receptors with diminished clonogenicity and augmented phagocytosis. CRISPR-mediated CD47 and HER2 dual knockouts not only inhibit clonogenicity but also enhance macrophage-mediated attack. Dual antibody of both receptors synergizes with RT in control of syngeneic mouse breast tumor. These results provide the evidence that aggressive behavior of radioresistant BC is caused by CD47-mediated anti-phagocytosis conjugated with HER2-prompted proliferation. Dual blockade of CD47 and HER2 is suggested to eliminate resistant cancer cells in BC radiotherapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antígeno CD47/metabolismo , Tolerancia a Radiación , Receptor ErbB-2/metabolismo , Animales , Neoplasias de la Mama/patología , Antígeno CD47/genética , Proliferación Celular , Células Clonales , Femenino , Humanos , Células MCF-7 , Macrófagos/metabolismo , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Fagocitosis , Transducción de Señal , Transcripción Genética , Carga Tumoral
5.
Free Radic Biol Med ; 45(12): 1674-81, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18845240

RESUMEN

Compounds that can protect cells from the effects of radiation are important for clinical use, in the event of an accidental or terrorist-generated radiation event, and for astronauts traveling in space. One of the major concerns regarding the use of radio-protective agents is that they may protect cells initially, but predispose surviving cells to increased genomic instability later. In this study we used WR-1065, the active metabolite of amifostine, to determine how protection from direct effects of high- and low-LET radiation exposure influences genomic stability. When added 30 min before irradiation and in high concentrations, WR-1065 protected cells from immediate radiation-induced effects as well as from delayed genomic instability. Lower, nontoxic concentrations of WR-1065 did not protect cells from death; however, it was effective in significantly decreasing delayed genomic instability in the progeny of irradiated cells. The observed increase in manganese superoxide dismutase protein levels and activity may provide an explanation for this effect. These results confirm that WR-1065 is protective against both low- and high-LET radiation-induced genomic instability in surviving cells.


Asunto(s)
Amifostina/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Inestabilidad Genómica/efectos de los fármacos , Mercaptoetilaminas/farmacología , Protectores contra Radiación/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta en la Radiación , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Pruebas de Micronúcleos , Tolerancia a Radiación , Superóxido Dismutasa/metabolismo , Rayos X
6.
Radiat Res ; 169(5): 495-505, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18439041

RESUMEN

Thiol-containing drugs such as WR1065, the free thiol form of amifostine, have been shown to induce a delayed radioprotective effect in both malignant and non-malignant cells. In mammalian cells exposed to a dose as low as 40 microM WR1065, the redox-sensitive nuclear transcription factor kappaB (NFkappaB) is activated, leading to an elevation in the expression of the antioxidant gene manganese superoxide dismutase (SOD2) and a concomitant increase in active SOD2 enzyme levels that peaks 24 to 32 h later. Exposure of cells to ionizing radiation during the period of elevated SOD2 enzymatic activity results in an enhanced radiation resistance. This is seen as an increase in surviving fraction as determined by standard colony formation assays. To determine whether this delayed radioprotection can be maintained over a prolonged period in cells of either malignant or non-malignant origin, both human microvascular endothelial cells (HMEC) and SA-NH mouse sarcoma cells were grown to confluence and exposed to 40 muM WR1065 using three administration protocols: (1) daily drug exposure for 10 days followed each day by irradiation with 2 Gy; (2) drug exposure once every 48 h followed by irradiation with 2 Gy 48 h later for 14 days; and (3) drug exposure every 72 h followed by irradiation with 2 Gy 72 h later for 12 days. As a function of each experimental condition, cell numbers and associated SOD2 enzymatic activities were measured at the time of each irradiation. None of the treatment conditions were toxic to either HMEC or SA-NH cells. SOD2 activity was elevated 5.3- and 1.8-fold over background on average for HMEC exposed to 40 microM WR1065 every 24 or 48 h, respectively. Likewise, SOD2 activity was elevated in SA-NH mouse sarcoma cells 7.8- and 4.9-fold after daily exposure to WR1065 or exposure to WR1065 once every 48 h, respectively. Both HMEC and SA-NH cells exhibited enhanced radiation resistance that correlated with the increase in SOD2 activity. The average respective increases in cell survival were 1.33 +/- 0.01 (SEM), 1.23 +/- 0.01 and 1.04 +/- 0.01 for HMEC exposed to WR1065 every 24, 48 and 72 h, respectively, and 1.27 +/- 0.01, 1.18 +/- 0.02 and 1.02 +/- 0.02 for SA-NH cells exposed to WR1065 every 24, 48 and 72 h, respectively. Both the elevation in WR1065-induced SOD2 enzymatic activity and the corresponding increase in radiation resistance were completely inhibited in HMEC and SA-NH cells transfected with human or mouse SOD2 siRNA oligomers and irradiated 24 h later. These data demonstrate that a delayed radioprotective effect can be induced and maintained over a prolonged period in both non-malignant and malignant cells exposed to thiol-containing drugs such as WR1065. For non-malignant cells this represents a novel paradigm for radiation protection. The ability of WR1065 to induce a persistent elevated radiation resistance in malignant cells, however, suggests a new potential concern regarding the issue of tumor protection in patients exposed to thiol-containing drugs.


Asunto(s)
Amifostina/administración & dosificación , Compuestos de Sulfhidrilo/administración & dosificación , Superóxido Dismutasa/metabolismo , Animales , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/efectos de la radiación , Humanos , Ratones , Neoplasias/enzimología , Neoplasias/patología , ARN Interferente Pequeño/genética , Superóxido Dismutasa/genética
7.
Int J Radiat Biol ; 84(8): 623-34, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18661379

RESUMEN

PURPOSE: To determine the effects of Amifostine or WR-151,327 on the incidence of lethal and non-lethal toxicities in a large cohort of mice exposed to gamma-ray or fission-spectrum neutron radiation. METHODS: To analyze data from 4000 B6CF1 mice which received a single whole body irradiation (WBI) with 206 cGy or 417 cGy cobalt-60 gamma rays or 10 cGy or 40 cGy of fission-spectrum neutrons (average energy 0.85 MeV) produced by the Janus reactor at Argonne National Laboratory. In the neutron cohort, Amifostine, WR-151,327, saline or nothing was injected once, intraperitoneally, 30 minutes before irradiation. In the cobalt-60 cohort, WR-151327 was omitted from the same protocol. At the time of natural death, tissue toxicities found in these mice were recorded, and these records were analyzed. While all previous studies focused on the modulation of life shortening effects of WBI by Amifostine, in this study we calculated changes in the frequencies of 59 tissue toxicities and changes in the total number of toxicities per animal. RESULTS: Amifostine protected against specific non-tumor pathological complications (67% of the non-tumor toxicities induced by gamma irradiation, 31% of the neutron induced specific toxicities), as well as specific tumors (56% of the tumor toxicities induced by gamma irradiation, 25% of the neutron induced tumors). Amifostine also reduced the total number of toxicities per animal for both genders in the gamma ray exposed mice and in males in the neutron exposed mice. CONCLUSIONS: Amifostine was protective against many, but not all, tissue toxicities caused by WBI gamma and neutron irradiation.


Asunto(s)
Amifostina/farmacología , Rayos gamma/efectos adversos , Neutrones/efectos adversos , Protectores contra Radiación/farmacología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Compuestos Organotiofosforados/farmacología , Irradiación Corporal Total
8.
Free Radic Biol Med ; 123: 39-52, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660403

RESUMEN

The survivin-associated radio-adaptive response can be induced following exposure to ionizing radiation in the dose range from 5 to 100 mGy, and its magnitude of expression is dependent upon the TP53 mutational status of cells and ROS signaling. The purpose of the study was to investigate the potential role of ROS in the development of the survivin-associated adaptive response. Utilizing human colon carcinoma HCT116 TP53 wild type (WT) and HCT116 isogenic TP53 null mutant (Mut) cell cultures, the roles of inter- and intracellular ROS signaling on expression of the adaptive response as evidenced by changes in intracellular translocation of survivin measured by ELISA, and cell survival determined by a standard colony forming assay were investigated using ROS modifying agents that include emodin, N-acetyl-L-cysteine (NAC), fulvene-5, honokiol, metformin and rotenone. The role of NADPH oxidase 4 (NOX4) in the survivin-associated adaptive response was investigated by transfecting HCT116 cells, both WT and Mut, with two different NOX4 siRNA oligomers and Western blotting. A dose of 5 mGy or a 15 min exposure to 50 µM of the ROS producing drug emodin were equally effective in inducing a pro-survival adaptive response in TP53 WT and a radio-sensitization adaptive response in TP53 Mut HCT116 cells. Each response was associated with a corresponding translocation of survivin into the cytoplasm or nucleus, respectively. Exposure to 10 mM NAC completely inhibited both responses. Exposure to 10 µM honokiol induced responses similar to those observed following NAC exposure in TP53 WT and Mut cells. The mitochondrial complex 1 inhibitor rotenone was effective in reducing both cytoplasmic and nuclear survivin levels, but was ineffective in altering the expression of the adaptive response in either TP53 WT or Mut cells. In contrast, both metformin and fulvene-5, inhibitors of NOX4, facilitated the reversal of TP53 WT and Mut adaptive responses from pro-survival to radio-sensitization and vice versa, respectively. These changes were accompanied by corresponding reversals in the translocation of survivin to the nuclei of TP53 WT and to the cytoplasm of TP53 Mut cells. The potential role of NOX4 in the expression of the survivin-associated adaptive response was investigated by transfecting HCT116 cells with NOX4 siRNA oligomers to inhibit NOX4 expression. Under these conditions NOX4 expression was inhibited by about 50%, resulting in a reversal in the expression of the TP53 WT and Mut survivin-associated adaptive responses as was observed following metformin and fulvene-5 treatment. Exposure to 5 mGy resulted in enhanced NOX4 expression by about 40% in both TP53 WT and Mut cells, in contrast to only a 1-2% increase following a 2 Gy only exposure. Utilizing mixed cultures of HCT116 TP53 WT and isogenic null Mut cells, as few as 10% TP53 Mut cells were sufficient to control the expression of the remaining 90% WT cells and resulted in an overall radio-sensitization response accompanied by the nuclear translocation of survivin characteristic of homogeneous TP53 Mut populations.


Asunto(s)
Supervivencia Celular , Neoplasias del Colon/patología , NADPH Oxidasa 4/metabolismo , Tolerancia a Radiación , Especies Reactivas de Oxígeno/metabolismo , Survivin/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/radioterapia , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , NADPH Oxidasa 4/genética , Survivin/genética , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Radiat Res ; 168(1): 106-14, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17723002

RESUMEN

Human microvascular endothelial cells (HMEC) were exposed to ionizing radiation at doses ranging from 0 to 16 Gy in either the presence or absence of the active thiol forms of amifostine (WR1065), phosphonol (WR255591), N-acetyl-l-cysteine (NAC), captopril or mesna. Each of these clinically relevant thiols, administered to HMEC at a dose of 4 mM for 30 min prior to irradiation, is known to exhibit antioxidant properties. The purpose of this investigation was to determine the relationship(s), if any, between the frequency of radiation-induced histone H2AX phosphorylation at serine 139 (gamma-H2AX) in cells and subsequent survival, as assessed by colony-forming ability, in exposed cell populations as a function of the presence or absence of each of the five thiol compounds during irradiation. gamma-H2AX formation in irradiated cells, as a function of relative DNA content, was quantified by bivariant flow cytometry analysis with FITC-conjugated gamma-H2AX antibody and nuclear DAPI staining. gamma-H2AX formation in cells was measured as the relative fold increase as a function of the treatment conditions. The frequency of gamma-H2AX-positive cells increased with increasing dose of radiation followed by a dose- and time-dependent decay. The most robust response for gamma-H2AX formation occurred 1 h after irradiation with their relative frequencies decreasing as a function of time 4 and 24 h later. To assess the effects of the various thiols on gamma-H2AX formation, all measurements were made 1 h after irradiation. WR1065 was not only effective in protecting HMEC against gamma-H2AX formation across the entire dose range of radiation exposures used, but it was also significantly more cytoprotective than either its prodrug (WR2721) or disulfide (WR33278) analogue. WR1065 had no significant effect on gamma-H2AX formation when administered immediately or up to 30 min after radiation exposure. An inhibitory effect against gamma-H2AX formation induced by 8 Gy of radiation was expressed by each of the thiols tested. NAC, captopril and mesna were equally effective in reducing the frequency of gamma-H2AX formation, with both WR1065 and WR255591 exhibiting a slightly more robust protective effect. Each of the five thiols was effective in reducing the frequency of gamma-H2AX-positive cells across all phases of the cell cycle. In contrast to the relative ability of each of these thiols to inhibit gamma-H2AX formation after irradiation, NAC, captopril and mesna afforded no protection to HMEC as determined using a colony-forming survival assay. Only WR1065 and WR255591 were effective in reducing the frequencies of radiation-induced gamma-H2AX-positive cells as well as protecting against cell death. These results suggest that the use of gamma-H2AX as a biomarker for screening the efficacy of novel antioxidant radioprotective compounds is highly problematic since their formation and disappearance may be linked to processes beyond simply the formation and repair of radiation-induced DSBs.


Asunto(s)
Amifostina/farmacología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Histonas/metabolismo , Compuestos de Sulfhidrilo/farmacología , Amifostina/análogos & derivados , Amifostina/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/efectos de la radiación , Histonas/química , Humanos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Radiación Ionizante
10.
Radiat Res ; 167(4): 465-74, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17388698

RESUMEN

RKO36 cells, a subclone of RKO colorectal carcinoma cells that have been stably transfected with the pCMV-EGFP2Xho vector, were grown to confluence and then exposed to either the radioprotector WR-1065, i.e. the active thiol form of amifostine, for 30 min at doses of 40 microM and 4 mM or the cytokine tumor necrosis factor alpha (TNFalpha, TNFA) for 30 min at a concentration of 10 ng/ml and then washed. Total protein was isolated as a function of time up to 32 h after these treatments. Both doses of WR-1065 as well as the concentration of TNFalpha used were effective in elevating intracellular levels of the antioxidant protein SOD2 (also known as MnSOD) at least 15-fold over background levels as determined by Western blot analysis, while measured SOD2 activity was elevated between 5.5- and 6.9-fold. SOD2 reached a maximal level 24 h and 20 h after WR-1065 and TNFalpha treatments, respectively. The antioxidant proteins catalase and glutathione peroxidase (GPX) were also monitored over the 32-h period. In contrast to the robust changes observed in intracellular levels of SOD2 as a function of time after exposure of cells to WR-1065, catalase levels were elevated only 2.6-fold over background as determined by Western blot analysis, while GPX activity was unaffected by WR-1065 exposure. GPX protein levels were extremely low in cells, and analysis of GPX activity using a spectrophotometric method based on the consumption of reduced NADPH also revealed no measurable change as a function of WR-1065 or TNFalpha exposure. RKO36 cells either were irradiated with X rays in the presence of either 40 microM or 4 mM WR-1065 or 10 ng/ml TNFalpha or were irradiated 24 or 20 h later, respectively, when SOD2 protein levels were most elevated. The concentrations and exposure conditions used for WR-1065 and TNFalpha were not cytotoxic and had no effect on plating efficiencies or cell survival compared to untreated controls. No protection or sensitization was observed for cells irradiated in the presence of 40 microM WR-1065 or TNFalpha. Survival was elevated 1.90-fold for cells irradiated in the presence of 4 mM WR-1065. When RKO36 cells were irradiated with 2 Gy 24 h after 40 microM or 4 mM WR-1065 and 20 h after TNFalpha treatments when SOD2 levels were the most increased, survival was elevated 1.42-, 1.48- and 1.36-fold, respectively. This increased survival represents a SOD2-mediated delayed radioprotective effect. SOD2 appears to be an important antioxidant gene whose inducible expression is an important element in adaptive cellular responses in general, and the delayed radioprotective effect in particular. It can be induced by a range of agents including cytoprotective nonprotein thiols such as WR-1065 and pleiotropic cytokines such as TNFalpha.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Mercaptoetilaminas/administración & dosificación , Protectores contra Radiación/administración & dosificación , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/administración & dosificación , Amifostina/administración & dosificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Tolerancia a Radiación
11.
Radiat Res ; 188(1): 66-74, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28492344

RESUMEN

One of the most concerning side effects of exposure to radiation are the carcinogenic risks. To reduce the negative effects of radiation, both cytoprotective and radioprotective agents have been developed. However, little is known regarding their potential for suppressing carcinogenesis. Andrographis paniculata , a plant, with multiple medicinal uses that is commonly used in traditional medicine, has three major constituents known to have cellular antioxidant activity: andrographolide (AP1); 14-deoxy-11,12-didehydroandrographolide (AP3); and neoandrographolide (AP4). In our study, we tested these elements for their radioprotective properties as well as their anti-neoplastic effects on transformation using the BALB/3T3 cell model. All three compounds were able to reduce radiation-induced DNA damage. However, AP4 appeared to have superior radioprotective properties compared to the other two compounds, presumably by protecting mitochondrial function. The compound was able to suppress radiation-induced cellular transformation through inhibition of STAT3. Treatment with AP4 also reduced expressions of MMP-2 and MMP-9. These results suggest that AP4 could be further studied and developed into an anti-transformation/carcinogenic drug as well as a radioprotective agent.


Asunto(s)
Andrographis/química , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/efectos de la radiación , Diterpenos/administración & dosificación , Extractos Vegetales/administración & dosificación , Protectores contra Radiación/administración & dosificación , Animales , Células 3T3 BALB , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Ratones , Extractos Vegetales/química , Dosis de Radiación , Tolerancia a Radiación/efectos de la radiación
12.
Radiat Res ; 188(5): 579-590, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28813624

RESUMEN

A survivin-associated radio-adaptive response, characterized by increased radiation resistance or sensitization, was induced by exposure to 5 mGy of ionizing radiation and was correlated to the TP53 mutational status of exposed cells. Ten human cancer lines were investigated: colorectal carcinomas HCT116 and RKO [TP53 wild-type (WT)] and their respective TP53 null isogenic lines; breast adenocarcinomas MCF7 (TP53 WT) and MDA-MB-231 (TP53 Mut); lung carcinomas A549 (TP53 WT) and NCI-H1975 (TP53 Mut); and pancreatic carcinomas Hs766T (TP53 WT) and Panc-1 (TP53 Mut). Radiation induced (5 mGy) changes in the subsequent responses to 2 Gy in a multi-dose paradigm. Effects on radiation sensitivity were associated with changes in survivin's intracellular translocation to the cytoplasm (TP53 WT) or nucleus (TP53 Mut). Survival responses were determined using a colony forming assay. Intracellular localization of survivin was determined by ELISA and correlated with survival response. Two 2 Gy doses had minimal effects on the intracellular translocation of survivin. When preceded 15 min earlier by a 5 mGy exposure, survivin translocated to the cytoplasm in all of the TP53 WT cell lines, and to the nuclei in the TP53 null and Mut cells. All TP53 WT cells were protected (P < 0.001) by 5 mGy exposures, while Mut cells were sensitized (P < 0.001). HCT116 and RKO TP53 WT cells were admixed with their respective isogenic TP53 null counterparts in different proportions: 75% to 25%, 50% to 50% and 25% to 75%, respectively. All mixed confluent cultures expressed enhanced radio-sensitization (P ≤ 0.047) characteristic of TP53 Mut cells, which could be inhibited by their exposure to the antioxidant N-acetyl-l-cysteine (NAC) indicating a role for intercellular signaling by reactive oxygen species (ROS). ROS signaling in propagating the survivin-mediated response is involved in both intra- and intercellular communication processes.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Proteínas Inhibidoras de la Apoptosis/metabolismo , Tolerancia a Radiación/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Acetilcisteína/farmacología , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/efectos de los fármacos , Genómica , Células HCT116 , Humanos , Mutación , Tolerancia a Radiación/efectos de los fármacos , Survivin
13.
Int J Radiat Biol ; 93(7): 665-675, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28281393

RESUMEN

PURPOSE: To assess the radiosensitizing effect of the biguanide drug metformin used alone or in combination with reactive oxygen species (ROS) modifying agents N-acetyl-L-cysteine (NAC) or emodin, and contrasted to the mitochondrial complex 1 inhibitor rotenone in altering the radiation responses of the p53 wild-type SA-NH and p53 mutant FSa mouse tumor lines grown either in vitro or in vivo. MATERIALS AND METHODS: Tumor cells were grown to confluence in vitro and exposed to a single 4 Gy dose in the presence or absence of metformin (5 mM) and ROS modifiers or to 10 Gy with or without metformin as tumors in the flanks of C3H mice using a tumor growth delay assay. RESULTS: Both metformin and rotenone protected SA-NH (p < .001) while sensitizing FSa (p < .001) to 4 Gy. Neither NAC nor emodin altered metformin's action. Metformin was also directly toxic to FSa cells (p = .002). In contrast, in vivo metformin (250 mg/kg) sensitized both SA-NH (9-day growth delay, p < .05) and FSa (4-day growth delay, p < .05) tumors if administered 1 h before irradiation. CONCLUSION: Metformin effects on tumor cells measured under in vitro conditions may differ from those determined in vivo due to p53 and heterogeneous environmental factors.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Metformina/administración & dosificación , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/radioterapia , Proteína p53 Supresora de Tumor/metabolismo , Acetilcisteína/administración & dosificación , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Emodina/administración & dosificación , Femenino , Ratones , Ratones Endogámicos C3H , Neoplasias Experimentales/patología , Dosis de Radiación , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación
14.
Free Radic Biol Med ; 40(6): 1004-16, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16540396

RESUMEN

The free radical scavenger WR1065 (SH) is the active thiol form of the clinically approved cytoprotector amifostine. At doses of 40 microM and 4 mM it can activate the redox-sensitive nuclear transcription factor kappaB (NFkappaB) and elevate the expression of the antioxidant gene manganese superoxide dismutase (MnSOD) in human microvascular endothelial cells (HMEC). MnSOD contains binding motifs for a number of transcription factors other than NFkappaB and codes for a potent antioxidant enzyme localized in the mitochondria that is known to confer enhanced radiation resistance to cells. The purpose of this study was to determine the effect of WR1065 exposure on the various transcription factors known to affect MnSOD expression along with the subsequent kinetics of intracellular elevation of MnSOD protein levels and associated change in sensitivity to ionizing radiation in HMEC. Cells were grown to confluence and exposed to WR1065 for 30 min. Affects on the transcription factors AP1, AP2, CREB, NFkappaB, and Sp1 were monitored as a function of time ranging from 30 min to 4 h after drug exposure using a gel-shift assay. Only NFkappaB exhibited a marked activation and that occurred 30 min following the cessation of drug exposure. MnSOD protein levels, as determined by Western blot analysis, increased up to 16-fold over background control levels by 16 h following drug treatment, and remained at 10-fold or higher levels for an additional 32 h. MnSOD activity was evaluated using a gel-based assay and was found to be active throughout this time period. HMEC were irradiated with X-rays either in the presence of 40 microM or 4 mM WR1065 or 24 h after its removal when MnSOD levels were most elevated. No protection was observed for cells irradiated in the presence of 40 microM WR1065. In contrast, a 4 mM dose of WR1065 afforded an increase in cell survival by a factor of 2. A "delayed radioprotective" effect was, however, observed when cells were irradiated 24 h later, regardless of the concentration of WR1065 used. This effect is characterized as an increase in survival at the 2 Gy dose point, i.e., a 40% increase in survival, and an increase in the initial slope of the survival curve by a factor of 2. The anti-inflammatory sesquiterpene lactone, Helenalin, is an effective inhibitor of NFkappaB activation. HMEC were exposed to Helenalin for 2 h at a nontoxic concentration of 5 microM prior to exposure to WR1065. This treatment not only inhibited activation of NFkappaB by WR1065, but also inhibited the subsequent elevation of MnSOD and the delayed radioprotective effect. A persistent marked elevation of MnSOD in cells following their exposure to a thiol-containing reducing agent such as WR1065 can result in an elevated resistance to the cytotoxic effects of ionizing radiation and represents a novel radioprotection paradigm.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Mercaptoetilaminas/farmacología , FN-kappa B/fisiología , Protectores contra Radiación/farmacología , Superóxido Dismutasa/biosíntesis , Western Blotting , Células Cultivadas , Endotelio Vascular/efectos de la radiación , Inducción Enzimática , Humanos , Sesquiterpenos/farmacología , Sesquiterpenos de Guayano , Rayos X
15.
J Radiat Res ; 47(3-4): 245-57, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16960336

RESUMEN

We applied a flow cytometric method to quantify IR-induced histone H2AX phosphorylation at serine 139 (gammaH2AX) and compared those values to those obtained using a standard microscopy based foci counting method. After PFA fixation, methanol permeabilization was suitable for both FITC- or Alexa647-gammaH2AX. In contrast, Alexa647-gammaH2AX was not suitable for ethanol permeabilization. Antibody concentrations at 1-2 microg/ml yielded the highest gammaH2AX positive percentage for both antibodies. Without DAPI staining, gammaH2AX formation can be measured as a relative fold increase. Values determined by bivariant flow cytometric analysis and those obtained using microscopic foci formation exhibited a good quantitative correlation. Values obtained by both methods could vary according to the gating or threshold setting used. gammaH2AX positive cells increased as a function of radiation dose (2-16 Gy) followed by a dose-dependent decay. The free radical scavenger N-acetyl-L-cysteine (NAC), if administered at a concentration of 4 mM 30 min before IR, was effective in reducing IR-induced gammaH2AX formation in all phases of the cell cycle. We have developed a simplified and quantitative flow cytometry based method to measure IR-induced gammaH2AX in cells and demonstrated strong correlation to values obtained by a standard automated digital microscopic foci analysis along with NIH ImageJ custom macro software.


Asunto(s)
Roturas del ADN , ADN/efectos de la radiación , Células Endoteliales/fisiología , Células Endoteliales/efectos de la radiación , Citometría de Flujo/métodos , Histonas/genética , Histonas/efectos de la radiación , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Histonas/ultraestructura , Humanos , Microcirculación/citología , Microcirculación/fisiología , Microcirculación/efectos de la radiación , Dosis de Radiación , Radiación Ionizante
16.
Free Radic Biol Med ; 99: 110-119, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27427516

RESUMEN

Exposure of cells to a dose of ionizing radiation as low as 5mGy can induce changes in radiation sensitivity expressed by cells exposed to subsequent higher doses at later times. This is referred to as an adaptive effect. We describe a unique survivin-associated adaptive response in which increased radiation resistance or sensitization of cells can be induced by exposure to 5mGy or to the reactive oxygen species (ROS) generating drug Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a naturally occurring anthraquinone. The purpose of this study was to determine the role of ROS generating processes in affecting both the intracellular localization of the inhibitor of apoptosis protein survivin and its subsequent effect on radiation response in the presence or absence of the anti-oxidant N-acetyl-L-cysteine (NAC). Experiments were performed using two well characterized murine sarcomas: SA-NH p53 wild-type (WT) and FSa p53 mutant (Mut), grown either in culture or as solid tumors in the right hind legs of C3H mice. Doses of 5mGy or 50µM Emodin were used to induce changes in the response of these tumor cells to higher radiation exposures using a multi-dosing paradigm. Effects on radiation sensitivity were determined for SA-NH and FSa cells as a function of survivin translocation either to the cytoplasm or nucleus in the presence or absence of 10mM NAC treatment. In vitro survival assays (2Gy per fraction, two once daily fractions) and tumor growth delay (TGD) (5Gy per fraction, five once daily fractions) studies were performed. Intracellular localization of survivin was determined by enzyme-linked immunosorbent assay (ELISA) and correlated to survival response and treatment conditions. 2Gy alone had no effect on intracellular translocation of survivin. When preceded 15min earlier by 5mGy or Emodin exposures, survivin became elevated in the cytoplasm of p53 WT SA-NH as compared to the nuclei of p53 Mut FSa cells. SA-NH cells transfected with p53 small interfering RNA (siRNA), in contrast, responded similarly to p53 Mut FSa cells by becoming more radiation sensitive if exposed to 5mGy prior to each 2Gy irradiation. In contrast to their respective responses to five once daily 5Gy fractions, SA-NH tumors were protected by 5mGy exposures administered 15min prior to each daily 5Gy dose as evidenced by a more rapid growth (1.9 day decrease in TGD, P=0.032), while FSa tumors were sensitized, growing at a much slower rate (4.5 day increase in TGD, P<0.001). Exposure of SA-NH and FSa tumor cells to 10mM NAC inhibited the ability of 5mGy and Emodin to induce intracellular translocation of survivin and the corresponding altered adaptive survival response. The survivin-associated adaptive response can be induced following a multi-dosing scheme in which very low radiation doses are followed shortly thereafter by higher doses consistent with a standard image guided radiotherapy protocol that is currently widely used in the treatment of cancer. While induced by exposure to ROS generating stresses, the ultimate expression of changes in radiation response is dependent upon the bi-functionality of the tumor associated protein survivin and its intracellular translocation.


Asunto(s)
Emodina/farmacología , Fibrosarcoma/terapia , Regulación Neoplásica de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/genética , Oxidantes/farmacología , Tolerancia a Radiación/efectos de los fármacos , Proteínas Represoras/genética , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Fibrosarcoma/genética , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Rayos gamma , Miembro Posterior , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ratones , Ratones Endogámicos C3H , Trasplante de Neoplasias , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Survivin , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Biochim Biophys Acta ; 1637(2): 151-5, 2003 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-12633903

RESUMEN

A rapid method to determine the systemic incorporation of amifostine has been sought in order to determine the effectiveness of different administration routes without the delay inherent in awaiting therapeutic results. Consistent changes in animal measurements of nitroxide signal decay were monitored using in vivo EPR at frequencies low enough to ensure uniform sensitivity to organs deep in 20-g C3H mice. Conditions included both co-administration of the amifostine with the carbamoyl-proxyl spin probe (CP) via i.p. injection (n=6) and oral administration (n=8) of the amifostine. These decreased the first order rate of decay of the CP EPR signal after a dose of 13.5 Gy radiation, by 23% and 18%, respectively. These changes were significantly different from the rate of decay of the CP EPR signal without amifostine, but were statistically indistinguishable from each other. These data demonstrate: (1) condition-dependent exponential decay of CP EPR signal allowing its use to determine systemic availability of a drug, and (2) that oral administration and i.p. injection of amifostine are both effective in affecting the CP EPR signal decay rate in a mouse model. This is a strong indicator of similar bioavailability in mice from both routes of administration.


Asunto(s)
Amifostina/administración & dosificación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Protectores contra Radiación/administración & dosificación , Administración Oral , Amifostina/farmacocinética , Animales , Disponibilidad Biológica , Femenino , Semivida , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos C3H , Modelos Animales
18.
PLoS One ; 10(12): e0140989, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26649569

RESUMEN

INTRODUCTION: The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREFLSS). It was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limited number of animal studies. METHODS AND RESULTS: We argue that the linear-quadratic model does not provide appropriate support to estimate the risk of contemporary exposures. In this work, we re-estimated DDREFLSS using 15 animal studies that were not included in BEIR VII's original analysis. Acute exposure data led to a DDREFLSS estimate from 0.9 to 3.0. By contrast, data that included both acute and protracted exposures led to a DDREFLSS estimate from 4.8 to infinity. These two estimates are significantly different, violating the assumptions of the linear-quadratic model, which predicts that DDREFLSS values calculated in either way should be the same. CONCLUSIONS: Therefore, we propose that future estimates of the risk of protracted exposures should be based on direct comparisons of data from acute and protracted exposures, rather than from extrapolations from a linear-quadratic model. The risk of low dose exposures may be extrapolated from these protracted estimates, though we encourage ongoing debate as to whether this is the most valid approach. We also encourage efforts to enlarge the datasets used to estimate the risk of protracted exposures by including both human and animal data, carcinogenesis outcomes, a wider range of exposures, and by making more radiobiology data publicly accessible. We believe that these steps will contribute to better estimates of the risks of contemporary radiation exposures.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Radiación Ionizante , Radiobiología , Medición de Riesgo , Animales , Humanos , Neoplasias Inducidas por Radiación , Factores de Riesgo
19.
Radiat Res ; 183(4): 391-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25763931

RESUMEN

A survivin-mediated radio-adaptive response was induced in SA-NH murine sarcoma cells following activation of nuclear transcription factor κB (NFκB) by very low doses of ionizing radiation of 5, 20 or 100 mGy. SA-NH cells and a clone stably transfected with a plasmid containing a mutated IκBα gene that prevents the activation of NFκB (SA-NH+mIκBα1) were used to investigate the role of NFκB activation in the development and expression of the survivin-mediated radio-adaptive response. Tumor cells were exposed to very low doses of radiation 30 min prior to or at times ranging from 30 min to 6 h after the first of two 2 Gy doses separated by 24 h under in vitro conditions. Evidence of very low dose radiation induced a radio-adaptive response only in SA-NH but not SA-NH+mIκBα1 cells was shown by both an increase in SA-NH cell survival of 20-40% using a standard colony forming assay and reduced apoptosis frequencies of 20-40% as determined by the TUNEL assay. Changes in survivin protein levels as a function of irradiation conditions were monitored by Western blot. A 100 mGy exposure 30 min prior to a 2 Gy dose resulted in an elevation in total survivin protein 24 h later in SA-NH but not SA-NH+mIκBα1 cells. Transfection of cells with survivin siRNA inhibited elevation of survivin protein by very low dose radiation and the subsequent radio-adaptive response in SA-NH cells. These data suggest that the survivin-mediated radio-adaptive response is dependent upon the ability of cells to activate NFκB.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Proteínas Inhibidoras de la Apoptosis/metabolismo , FN-kappa B/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Ratones , Survivin
20.
Cell Rep ; 13(10): 2056-63, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26670043

RESUMEN

Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy-consuming process. However, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of the cell-cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is reduced significantly in cells harboring CDK1 phosphorylation-deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair are also compromised severely in cells harboring mitochondrially targeted, kinase-deficient CDK1. These results demonstrate a mechanism governing the communication between mitochondria and the nucleus by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress conditions.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Mitocondrias/metabolismo , Adenosina Trifosfato , Western Blotting , Proteína Quinasa CDC2 , Línea Celular , Ensayo Cometa , Daño del ADN/efectos de la radiación , Metabolismo Energético/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Transporte de Proteínas/efectos de la radiación , ARN Interferente Pequeño , Efectos de la Radiación , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA