Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940346

RESUMEN

Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Humanos , Animales , Epidermis/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(22): e2220635120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216502

RESUMEN

Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.


Asunto(s)
Folículo Piloso , MicroARNs , Animales , Ratones , Actomiosina/metabolismo , Cabello , Folículo Piloso/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismo
3.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594662

RESUMEN

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Asunto(s)
Desmosomas , Enfermedad , Humanos , Adhesión Celular , Desmosomas/fisiología , Pénfigo
4.
Nat Rev Mol Cell Biol ; 12(9): 565-80, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21860392

RESUMEN

To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.


Asunto(s)
Células Epidérmicas , Epidermis/crecimiento & desarrollo , Morfogénesis/fisiología , Piel/citología , Piel/crecimiento & desarrollo , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Humanos , Uniones Intercelulares/genética , Uniones Intercelulares/metabolismo , Uniones Intercelulares/fisiología , Modelos Biológicos , Morfogénesis/genética , Piel/ultraestructura
5.
J Cell Sci ; 133(6)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179593

RESUMEN

Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.


Asunto(s)
Desmosomas , Filamentos Intermedios , Mecanotransducción Celular , Uniones Adherentes , Cadherinas , Adhesión Celular , Citoesqueleto
6.
J Cell Sci ; 130(20): 3437-3445, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29032358

RESUMEN

Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.


Asunto(s)
Filamentos Intermedios/ultraestructura , Animales , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Citoplasma/fisiología , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Humanos , Filamentos Intermedios/fisiología , Mecanotransducción Celular , Modelos Moleculares , Piel/ultraestructura
7.
Hum Mol Genet ; 25(2): 348-57, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604139

RESUMEN

Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin.


Asunto(s)
Cardiomiopatías/genética , Desmoplaquinas/genética , Desmosomas/metabolismo , Mutación Missense , Enfermedades Cutáneas Genéticas/genética , Secuencia de Aminoácidos , Cardiomiopatías/metabolismo , Niño , Preescolar , Conexina 43/metabolismo , Desmoplaquinas/metabolismo , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Miocardio/metabolismo , Transporte de Proteínas , Alineación de Secuencia , Piel/metabolismo , Enfermedades Cutáneas Genéticas/metabolismo , Síndrome
8.
Exp Dermatol ; 26(5): 423-430, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27892606

RESUMEN

SVEP1 is a recently identified multidomain cell adhesion protein, homologous to the mouse polydom protein, which has been shown to mediate cell-cell adhesion in an integrin-dependent manner in osteogenic cells. In this study, we characterized SVEP1 function in the epidermis. SVEP1 was found by qRT-PCR to be ubiquitously expressed in human tissues, including the skin. Confocal microscopy revealed that SVEP1 is normally mostly expressed in the cytoplasm of basal and suprabasal epidermal cells. Downregulation of SVEP1 expression in primary keratinocytes resulted in decreased expression of major epidermal differentiation markers. Similarly, SVEP1 downregulation was associated with disturbed differentiation and marked epidermal acanthosis in three-dimensional skin equivalents. In contrast, the dispase assay failed to demonstrate significant differences in adhesion between keratinocytes expressing normal vs low levels of SVEP1. Homozygous Svep1 knockout mice were embryonic lethal. Thus, to assess the importance of SVEP1 for normal skin homoeostasis in vivo, we downregulated SVEP1 in zebrafish embryos with a Svep1-specific splice morpholino. Scanning electron microscopy revealed a rugged epidermis with perturbed microridge formation in the centre of the keratinocytes of morphant larvae. Transmission electron microscopy analysis demonstrated abnormal epidermal cell-cell adhesion with disadhesion between cells in Svep1-deficient morphant larvae compared to controls. In summary, our results indicate that SVEP1 plays a critical role during epidermal differentiation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Epidermis/metabolismo , Epidermis/ultraestructura , Queratinocitos/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Expresión Génica , Humanos , Ratones Noqueados , Cultivo Primario de Células , Pez Cebra
9.
Am J Dermatopathol ; 39(6): 440-444, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28121638

RESUMEN

Epidermolytic ichthyosis (EI) is a rare disorder of cornification caused by mutations in KRT1 and KRT10, encoding two suprabasal epidermal keratins. Because of the variable clinical features and severity of the disease, histopathology is often required to correctly direct the molecular analysis. EI is characterized by hyperkeratosis and vacuolar degeneration of the upper epidermis, also known as epidermolytic hyperkeratosis, hence the name of the disease. In the current report, the authors describe members of 2 families presenting with clinical features consistent with EI. The patients were shown to carry classical mutations in KRT1 or KRT10, but did not display epidermolytic changes on histology. These observations underscore the need to remain aware of the limitations of pathological features when considering a diagnosis of EI.


Asunto(s)
Hiperqueratosis Epidermolítica/patología , Piel/patología , Biopsia , Preescolar , Análisis Mutacional de ADN , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Herencia , Humanos , Hiperqueratosis Epidermolítica/genética , Inmunohistoquímica , Queratina-1/genética , Queratina-10/genética , Masculino , Mutación , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Piel/química
10.
J Cell Sci ; 127(Pt 10): 2339-50, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24610950

RESUMEN

Adhesion between cells is established by the formation of specialized intercellular junctional complexes, such as desmosomes. Desmosomes contain isoforms of two members of the cadherin superfamily of cell adhesion proteins, desmocollins (Dsc) and desmogleins (Dsg), but their combinatorial roles in desmosome assembly are not understood. To uncouple desmosome assembly from other cell-cell adhesion complexes, we used micro-patterned substrates of Dsc2aFc and/or Dsg2Fc and collagen IV; we show that Dsc2aFc, but not Dsg2Fc, was necessary and sufficient to recruit desmosome-specific desmoplakin into desmosome puncta and produce strong adhesive binding. Single-molecule force spectroscopy showed that monomeric Dsc2a, but not Dsg2, formed Ca(2+)-dependent homophilic bonds, and that Dsg2 formed Ca(2+)-independent heterophilic bonds with Dsc2a. A W2A mutation in Dsc2a inhibited Ca(2+)-dependent homophilic binding, similar to classical cadherins, and Dsc2aW2A, but not Dsg2W2A, was excluded from desmosomes in MDCK cells. These results indicate that Dsc2a, but not Dsg2, is required for desmosome assembly through homophilic Ca(2+)- and W2-dependent binding, and that Dsg2 might be involved later in regulating a switch to Ca(2+)-independent adhesion in mature desmosomes.


Asunto(s)
Cadherinas/metabolismo , Desmosomas/metabolismo , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/metabolismo , Desmogleínas/metabolismo , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Análisis Espectral
11.
J Allergy Clin Immunol ; 136(5): 1268-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26073755

RESUMEN

BACKGROUND: Severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome is a recently recognized syndrome caused by mutations in the desmoglein 1 gene (DSG1). To date, only 3 families have been reported. OBJECTIVE: We studied a new case of SAM syndrome known to have no mutations in DSG1 to detail the clinical, histopathologic, immunofluorescent, and ultrastructural phenotype and to identify the underlying molecular mechanisms in this rare genodermatosis. METHODS: Histopathologic, electron microscopy, and immunofluorescent studies were performed. Whole-exome sequencing data were interrogated for mutations in desmosomal and other skin structural genes, followed by Sanger sequencing of candidate genes in the patient and his parents. RESULTS: No mutations were identified in DSG1; however, a novel de novo heterozygous missense c.1757A>C mutation in the desmoplakin gene (DSP) was identified in the patient, predicting the amino acid substitution p.His586Pro in the desmoplakin polypeptide. CONCLUSIONS: SAM syndrome can be caused by mutations in both DSG1 and DSP. Knowledge of this genetic heterogeneity is important for both analysis of patients and genetic counseling of families. This condition and these observations reinforce the importance of heritable skin barrier defects, in this case desmosomal proteins, in the pathogenesis of atopic disease.


Asunto(s)
Dermatitis/genética , Desmoplaquinas/genética , Hipersensibilidad/genética , Mutación Missense/genética , Síndrome Debilitante/genética , Niño , Preescolar , Análisis Mutacional de ADN , Dermatitis/diagnóstico , Desmogleína 1/genética , Progresión de la Enfermedad , Humanos , Hipersensibilidad/diagnóstico , Lactante , Recién Nacido , Masculino , Linaje , Estructura Terciaria de Proteína/genética , Piel/patología , Síndrome Debilitante/diagnóstico
12.
J Cell Sci ; 126(Pt 18): 4195-207, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843618

RESUMEN

Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Plectina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Plectina/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Serina/genética , Transfección
13.
Cell Tissue Res ; 360(3): 501-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25693896

RESUMEN

Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure.


Asunto(s)
Desmosomas/metabolismo , Enfermedad , Transducción de Señal , Animales , Humanos , Proteínas/metabolismo
15.
J Clin Invest ; 134(13)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38768074

RESUMEN

Myocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment is often supportive. Mutations in DSP, a gene encoding the desmosomal protein desmoplakin, have been increasingly implicated in myocarditis. To model DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues (EHTs) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with heterozygous DSP truncating variants (DSPtvs) and a gene-edited homozygous deletion cell line (DSP-/-). At baseline, DSP-/- EHTs displayed a transcriptomic signature of innate immune activation, which was mirrored by cytokine release. Importantly, DSP-/- EHTs were hypersensitive to Toll-like receptor (TLR) stimulation, demonstrating more contractile dysfunction compared with isogenic controls. Relative to DSP-/- EHTs, heterozygous DSPtv EHTs had less functional impairment. DSPtv EHTs displayed heightened sensitivity to TLR stimulation, and when subjected to strain, DSPtv EHTs developed functional deficits, indicating reduced contractile reserve compared with healthy controls. Colchicine or NF-κB inhibitors improved strain-induced force deficits in DSPtv EHTs. Genomic correction of DSP p.R1951X using adenine base editing reduced inflammatory biomarker release from EHTs. Thus, EHTs replicate electrical and contractile phenotypes seen in human myocarditis, implicating cytokine release as a key part of the myogenic susceptibility to inflammation. The heightened innate immune activation and sensitivity are targets for clinical intervention.


Asunto(s)
Inmunidad Innata , Células Madre Pluripotentes Inducidas , Miocarditis , Miocitos Cardíacos , Humanos , Miocarditis/genética , Miocarditis/inmunología , Miocarditis/patología , Inmunidad Innata/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Masculino , Predisposición Genética a la Enfermedad , Femenino
16.
Circ Res ; 109(2): 193-201, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21617128

RESUMEN

RATIONALE: The early description of the intercalated disc defined 3 structures, all of them involved in cell-cell communication: desmosomes, gap junctions, and adherens junctions. Current evidence demonstrates that molecules not involved in providing a physical continuum between cells also populate the intercalated disc. Key among them is the voltage-gated sodium channel complex. An important component of this complex is the cytoskeletal adaptor protein Ankyrin-G (AnkG). OBJECTIVE: To test the hypothesis that AnkG partners with desmosome and gap junction molecules and exerts a functional effect on intercellular communication in the heart. METHODS AND RESULTS: We used a combination of microscopy, immunochemistry, patch-clamp, and optical mapping to assess the interactions between AnkG, Plakophilin-2, and Connexin43. Coimmunoprecipitation studies from rat heart lysate demonstrated associations between the 3 molecules. With the use of siRNA technology, we demonstrated that loss of AnkG expression caused significant changes in subcellular distribution and/or abundance of PKP2 and Connexin43 as well as a decrease in intercellular adhesion strength and electric coupling. Regulation of AnkG and of Na(v)1.5 by Plakophilin-2 was also demonstrated. Finally, optical mapping experiments in AnkG-silenced cells demonstrated a shift in the minimal frequency at which rate-dependence activation block was observed. CONCLUSIONS: These experiments support the hypothesis that AnkG is a key functional component of the intercalated disc at the intersection of 3 complexes often considered independent: the voltage-gated sodium channel, gap junctions, and the cardiac desmosome. Possible implications to the pathophysiology of inherited arrhythmias (such as arrhythmogenic right ventricular cardiomyopathy) are discussed.


Asunto(s)
Ancirinas/metabolismo , Conexina 43/metabolismo , Corazón/fisiología , Placofilinas/metabolismo , Canales de Sodio/metabolismo , Animales , Comunicación Celular , Desmosomas , Uniones Comunicantes , Activación del Canal Iónico , Unión Proteica/fisiología , Ratas
17.
Sci Rep ; 13(1): 12720, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543698

RESUMEN

Critical for the maintenance of epidermal integrity and function are attachments between intermediate filaments (IF) and intercellular junctions called desmosomes. The desmosomal cytoplasmic plaque protein desmoplakin (DP) is essential for anchoring IF to the junction. DP-IF interactions are regulated by a phospho-regulatory motif within the DP C-terminus controlling keratinocyte intercellular adhesion. Here we identify the protein phosphatase 2A (PP2A)-B55α holoenzyme as the major serine/threonine phosphatase regulating DP's C-terminus and consequent intercellular adhesion. Using a combination of chemical and genetic approaches, we show that the PP2A-B55α holoenzyme interacts with DP at intercellular membranes in 2D- and 3D- epidermal models and human skin samples. Our experiments demonstrate that PP2A-B55α regulates the phosphorylation status of junctional DP and is required for maintaining strong desmosome-mediated intercellular adhesion. These data identify PP2A-B55α as part of a regulatory module capable of tuning intercellular adhesion strength and a candidate disease target in desmosome-related disorders of the skin and heart.


Asunto(s)
Queratinocitos , Proteína Fosfatasa 2 , Humanos , Desmoplaquinas , Holoenzimas/metabolismo , Uniones Intercelulares/metabolismo , Queratinocitos/metabolismo , Proteína Fosfatasa 2/metabolismo
18.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865131

RESUMEN

Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.

19.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824910

RESUMEN

Melanoma arises from transformation of melanocytes in the basal layer of the epidermis where they are surrounded by keratinocytes, with which they interact through cell contact and paracrine communication. Considerable effort has been devoted to determining how the accumulation of oncogene and tumor suppressor gene mutations in melanocytes drive melanoma development. However, the extent to which alterations in keratinocytes that occur in the developing tumor niche serve as extrinsic drivers of melanoma initiation and progression is poorly understood. We recently identified the keratinocyte-specific cadherin, desmoglein 1 (Dsg1), as an important mediator of keratinocyte:melanoma cell crosstalk, demonstrating that its chronic loss, which can occur through melanoma cell-dependent paracrine signaling, promotes behaviors that mimic a malignant phenotype. Here we address the extent to which Dsg1 loss affects early steps in melanomagenesis. RNA-Seq analysis revealed that paracrine signals from Dsg1-deficient keratinocytes mediate a transcriptional switch from a differentiated to undifferentiated cell state in melanocytes expressing BRAFV600E, a driver mutation commonly present in both melanoma and benign nevi and reported to cause growth arrest and oncogene-induced senescence (OIS). Of ~220 differentially expressed genes in BRAFV600E cells treated with Dsg1-deficient conditioned media (CM), the laminin superfamily member NTN4/Netrin-4, which inhibits senescence in endothelial cells, stood out. Indeed, while BRAFV600E melanocytes treated with Dsg1-deficient CM showed signs of senescence bypass as assessed by increased senescence-associated ß-galactosidase activity and decreased p16, knockdown of NTN4 reversed these effects. These results suggest that Dsg1 loss in keratinocytes provides an extrinsic signal to push melanocytes towards oncogenic transformation once an initial mutation has been introduced.

20.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37471166

RESUMEN

Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.


Asunto(s)
Actinas , Enfermedades de la Piel , Humanos , Piel/patología , Acantólisis/genética , Acantólisis/metabolismo , Enfermedades de la Piel/complicaciones , Enfermedades de la Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA