Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 618(7963): 169-179, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225982

RESUMEN

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Asunto(s)
Endorribonucleasas , MicroARNs , ARN Mensajero , Humanos , Genes jun/genética , Genes myc/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/química , MicroARNs/genética , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Transcriptoma
2.
ACS Chem Biol ; 18(11): 2336-2342, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37870980

RESUMEN

Protein-targeted small molecule medicines often bind RNAs and affect RNA-mediated pathways in cells. Historically, small molecule engagement and modulation of RNA have not been considered in medicine development; however, RNA should be considered both a potential on- and off-target. Kinase inhibitors have emecrged as common RNA binders with dovitinib, a classic receptor tyrosine kinase (RTK) inhibitor, inhibiting RTKs and the biogenesis of oncogenic microRNA-21 through direct engagement. In this study, we use knowledge of the molecular recognition of both protein and RNA targets by dovitinib to design molecules that specifically inhibit the RNA target but lack activity against canonical protein targets in cells. As it is now becoming apparent that RNA can be both an on- and off-target for small molecule medicines, this study lays a foundation to use design principles to maximize desired compound activity while minimizing off-target effects.


Asunto(s)
MicroARNs , MicroARNs/metabolismo , Proteínas Tirosina Quinasas Receptoras , Inhibidores de Proteínas Quinasas/farmacología
3.
Clin Cancer Res ; 29(10): 1938-1951, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36988276

RESUMEN

PURPOSE: The aim of this study is to determine immune-related biomarkers to predict effective antitumor immunity in myelodysplastic syndrome (MDS) during immunotherapy (IMT, αCTLA-4, and/or αPD-1 antibodies) and/or hypomethylating agent (HMA). EXPERIMENTAL DESIGN: Peripheral blood samples from 55 patients with MDS were assessed for immune subsets, T-cell receptor (TCR) repertoire, mutations in 295 acute myeloid leukemia (AML)/MDS-related genes, and immune-related gene expression profiling before and after the first treatment. RESULTS: Clinical responders treated with IMT ± HMA but not HMA alone showed a significant expansion of central memory (CM) CD8+ T cells, diverse TCRß repertoire pretreatment with increased clonality and emergence of novel clones after the initial treatment, and a higher mutation burden pretreatment with subsequent reduction posttreatment. Autophagy, TGFß, and Th1 differentiation pathways were the most downregulated in nonresponders after treatment, while upregulated in responders. Finally, CTLA-4 but not PD-1 blockade attributed to favorable changes in immune landscape. CONCLUSIONS: Analysis of tumor-immune landscape in MDS during immunotherapy provides clinical response biomarkers.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Inmunoterapia
4.
bioRxiv ; 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32511381

RESUMEN

SARS-CoV-2 is a positive-sense single-stranded RNA virus that has exploded throughout the global human population. This pandemic coronavirus strain has taken scientists and public health researchers by surprise and knowledge of its basic biology (e.g. structure/function relationships in its genomic, messenger and template RNAs) and modes for therapeutic intervention lag behind that of other human pathogens. In this report we used a recently-developed bioinformatics approach, ScanFold, to deduce the RNA structural landscape of the SARS-CoV-2 transcriptome. We recapitulate known elements of RNA structure and provide a model for the folding of an essential frameshift signal. Our results find that the SARS-CoV-2 is greatly enriched in unusually stable and likely evolutionarily ordered RNA structure, which provides a huge reservoir of potential drug targets for RNA-binding small molecules. Our results also predict regions that are accessible for intermolecular interactions, which can aid in the design of antisense therapeutics. All results are made available via a public database (the RNAStructuromeDB) where they may hopefully drive drug discovery efforts to inhibit SARS-CoV-2 pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA