Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant J ; 116(6): 1633-1651, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37659090

RESUMEN

The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.


Asunto(s)
Arabidopsis , Proteínas SNARE , Membrana Celular/metabolismo , Fusión de Membrana , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Tirosina/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443185

RESUMEN

Type II tail-anchored (TA) membrane proteins are involved in diverse cellular processes, including protein translocation, vesicle trafficking, and apoptosis. They are characterized by a single C-terminal transmembrane domain that mediates posttranslational targeting and insertion into the endoplasmic reticulum (ER) via the Guided-Entry of TA proteins (GET) pathway. The GET system was originally described in mammals and yeast but was recently shown to be partially conserved in other eukaryotes, such as higher plants. A newly synthesized TA protein is shielded from the cytosol by a pretargeting complex and an ATPase that delivers the protein to the ER, where membrane receptors (Get1/WRB and Get2/CAML) facilitate insertion. In the model plant Arabidopsis thaliana, most components of the pathway were identified through in silico sequence comparison, however, a functional homolog of the coreceptor Get2/CAML remained elusive. We performed immunoprecipitation-mass spectrometry analysis to detect in vivo interactors of AtGET1 and identified a membrane protein of unknown function with low sequence homology but high structural homology to both yeast Get2 and mammalian CAML. The protein localizes to the ER membrane, coexpresses with AtGET1, and binds to Arabidopsis GET pathway components. While loss-of-function lines phenocopy the stunted root hair phenotype of other Atget lines, its heterologous expression together with the coreceptor AtGET1 rescues growth defects of Δget1get2 yeast. Ectopic expression of the cytosolic, positively charged N terminus is sufficient to block TA protein insertion in vitro. Our results collectively confirm that we have identified a plant-specific GET2 in Arabidopsis, and its sequence allows the analysis of cross-kingdom pathway conservation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fenotipo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Plant Physiol ; 187(4): 1916-1928, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235667

RESUMEN

Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.


Asunto(s)
Membrana Celular/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Transporte de Proteínas/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 116(12): 5795-5804, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30833400

RESUMEN

In flowering plants, the asymmetrical division of the zygote is the first hallmark of apical-basal polarity of the embryo and is controlled by a MAP kinase pathway that includes the MAPKKK YODA (YDA). In Arabidopsis, YDA is activated by the membrane-associated pseudokinase SHORT SUSPENSOR (SSP) through an unusual parent-of-origin effect: SSP transcripts accumulate specifically in sperm cells but are translationally silent. Only after fertilization is SSP protein transiently produced in the zygote, presumably from paternally inherited transcripts. SSP is a recently diverged, Brassicaceae-specific member of the BRASSINOSTEROID SIGNALING KINASE (BSK) family. BSK proteins typically play broadly overlapping roles as receptor-associated signaling partners in various receptor kinase pathways involved in growth and innate immunity. This raises two questions: How did a protein with generic function involved in signal relay acquire the property of a signal-like patterning cue, and how is the early patterning process activated in plants outside the Brassicaceae family, where SSP orthologs are absent? Here, we show that Arabidopsis BSK1 and BSK2, two close paralogs of SSP that are conserved in flowering plants, are involved in several YDA-dependent signaling events, including embryogenesis. However, the contribution of SSP to YDA activation in the early embryo does not overlap with the contributions of BSK1 and BSK2. The loss of an intramolecular regulatory interaction enables SSP to constitutively activate the YDA signaling pathway, and thus initiates apical-basal patterning as soon as SSP protein is translated after fertilization and without the necessity of invoking canonical receptor activation.


Asunto(s)
Arabidopsis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/metabolismo , Semillas/fisiología , Cigoto/metabolismo , Cigoto/fisiología
5.
J Cell Sci ; 131(10)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661846

RESUMEN

Tail-anchored (TA) proteins are anchored to their corresponding membrane via a single transmembrane segment (TMS) at their C-terminus. In yeast, the targeting of TA proteins to the endoplasmic reticulum (ER) can be mediated by the guided entry of TA proteins (GET) pathway, whereas it is not yet clear how mitochondrial TA proteins are targeted to their destination. It has been widely observed that some mitochondrial outer membrane (MOM) proteins are mistargeted to the ER when overexpressed or when their targeting signal is masked. However, the mechanism of this erroneous sorting is currently unknown. In this study, we demonstrate the involvement of the GET machinery in the mistargeting of suboptimal MOM proteins to the ER. These findings suggest that the GET machinery can, in principle, recognize and guide mitochondrial and non-canonical TA proteins. Hence, under normal conditions, an active mitochondrial targeting pathway must exist that dominates the kinetic competition against other pathways.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 114(8): E1544-E1553, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28096354

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634-645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147-1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Membrana Celular/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas SNARE/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Homeostasis/fisiología , Mamíferos/fisiología , Fusión de Membrana/fisiología , Chaperonas Moleculares/metabolismo , Filogenia , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas SNARE/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida
8.
Plant Cell ; 27(6): 1697-717, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002867

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive vesicle traffic, delivering membrane and cargo to target sites within the cell and at its surface. They contribute to cell homeostasis, morphogenesis, and pathogen defense. A subset of SNAREs, including the Arabidopsis thaliana SNARE SYP121, are known also to coordinate solute uptake via physical interactions with K(+) channels and to moderate their gating at the plasma membrane. Here, we identify a second subset of SNAREs that interact to control these K(+) channels, but with opposing actions on gating. We show that VAMPs (vesicle-associated membrane proteins), which target vesicles to the plasma membrane, also interact with and suppress the activities of the inward-rectifying K(+) channels KAT1 and KC1. Interactions were evident in yeast split-ubiquitin assays, they were recovered in vivo by ratiometric bimolecular fluorescence complementation, and they were sensitive to mutation of a single residue, Tyr-57, within the longin domain of VAMP721. Interaction was also recovered on exchange of the residue at this site in the homolog VAMP723, which normally localizes to the endoplasmic reticulum and otherwise did not interact. Functional analysis showed reduced channel activity and alterations in voltage sensitivity that are best explained by a physical interaction with the channel gates. These actions complement those of SYP121, a cognate SNARE partner of VAMP721, and lead us to propose that the channel interactions reflect a "hand-off" in channel control between the two SNARE proteins that is woven together with vesicle fusion.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Membrana Celular/fisiología , Potenciales de la Membrana/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/fisiología , Proteínas R-SNARE/fisiología , Simportadores/fisiología , Arabidopsis/metabolismo , Cotransportadores de K Cl
9.
Plant Cell ; 27(3): 675-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25747882

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion in all eukaryotes and contribute to homeostasis, pathogen defense, cell expansion, and growth in plants. Two homologous SNAREs, SYP121 (=SYR1/PEN1) and SYP122, dominate secretory traffic to the Arabidopsis thaliana plasma membrane. Although these proteins overlap functionally, differences between SYP121 and SYP122 have surfaced, suggesting that they mark two discrete pathways for vesicular traffic. The SNAREs share primary cognate partners, which has made separating their respective control mechanisms difficult. Here, we show that the regulatory protein SEC11 (=KEULE) binds selectively with SYP121 to affect secretory traffic mediated by this SNARE. SEC11 rescued traffic block by dominant-negative (inhibitory) fragments of both SNAREs, but only in plants expressing the native SYP121. Traffic and its rescue were sensitive to mutations affecting SEC11 interaction with the N terminus of SYP121. Furthermore, the domain of SEC11 that bound the SYP121 N terminus was itself able to block secretory traffic in the wild type and syp122 but not in syp121 mutant Arabidopsis. Thus, SEC11 binds and selectively regulates secretory traffic mediated by SYP121 and is important for recycling of the SNARE and its cognate partners.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Fusión de Membrana , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas Portadoras/química , Proteínas de Ciclo Celular , Proliferación Celular , Tamaño de la Célula , Citosol/metabolismo , Prueba de Complementación Genética , Inflorescencia/crecimiento & desarrollo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Epidermis de la Planta/citología , Unión Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética
10.
Plant Physiol ; 171(2): 727-58, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208310

RESUMEN

Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique.


Asunto(s)
Genómica , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas de Plantas/genética , Plantas/genética , Unión Proteica , Levaduras/genética , Levaduras/metabolismo
11.
Plant Cell ; 26(7): 3132-47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25082856

RESUMEN

Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Qa-SNARE/metabolismo , Acuaporinas/genética , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Genes Reporteros , Aparato de Golgi/metabolismo , Mutagénesis Insercional , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estomas de Plantas/citología , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteómica , Proteínas Qa-SNARE/genética , Proteínas Recombinantes de Fusión , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Plantones/citología , Plantones/genética , Plantones/fisiología , Agua/metabolismo
12.
Plant Physiol ; 168(3): 776-87, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25971551

RESUMEN

Fluorescence-based protein-protein interaction techniques are vital tools for understanding in vivo cellular functions on a mechanistic level. However, only under the condition of highly efficient (co)transformation and accumulation can techniques such as Förster resonance energy transfer (FRET) realize their potential for providing highly accurate and quantitative interaction data. FRET as a fluorescence-based method unifies several advantages, such as measuring in an in vivo environment, real-time context, and the ability to include transient interactions as well as detecting the mere proximity of proteins. Here, we introduce a novel vector set that incorporates the benefit of the recombination-based 2in1 cloning system with the latest state-of-the-art fluorescent proteins for optimal coaccumulation and FRET output studies. We demonstrate its utility across a range of methods. Merging the 2in1 cloning system with new-generation FRET fluorophore pairs allows for enhanced detection, speeds up the preparation of clones, and enables colocalization studies and the identification of meaningful protein-protein interactions in vivo.


Asunto(s)
Arabidopsis/genética , Vectores Genéticos/metabolismo , Nicotiana/genética , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas , Clonación Molecular , ADN Bacteriano/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Microscopía Fluorescente , Fotoblanqueo , Plantas Modificadas Genéticamente , Plásmidos/genética , Transformación Genética
13.
Plant Cell ; 25(4): 1368-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23572542

RESUMEN

The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual "handshaking" mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Competitiva , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Mutación , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
14.
Plant Physiol ; 166(2): 960-75, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25185120

RESUMEN

The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Activación del Canal Iónico , Datos de Secuencia Molecular , Canales de Potasio de Rectificación Interna/química , Homología de Secuencia de Aminoácido
15.
Plant Cell ; 24(8): 3463-81, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22942383

RESUMEN

Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.


Asunto(s)
Acuaporinas/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Zea mays/metabolismo , Secuencia de Aminoácidos , Animales , Acuaporinas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Aparato de Golgi/metabolismo , Homeostasis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células del Mesófilo/metabolismo , Datos de Secuencia Molecular , Oocitos/metabolismo , Ósmosis , Epidermis de la Planta/metabolismo , Proteínas de Plantas/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Transfección , Agua/metabolismo , Xenopus/genética , Xenopus/metabolismo , Zea mays/genética
16.
Methods Mol Biol ; 2772: 149-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411812

RESUMEN

Protein-protein interactions (PPIs) play vital roles in all subcellular processes, and a number of tools have been developed for their detection and analysis. Each method has its unique set of benefits and drawbacks that need to be considered prior application. In fact, researchers are spoilt for choice when it comes to deciding which method to use for the initial detection of a PPI and which to corroborate the findings. With constant improvements in microscope development, the possibilities of techniques to study PPIs in vivo, and in real time, are continuously enhanced and expanded. Here, we describe three common approaches, their recent improvements incorporating a 2-in-1 cloning approach, and their application in plant cell biology: ratiometric bimolecular fluorescence complementation (rBiFC), FRET acceptor photobleaching (FRET-AB), and fluorescent lifetime imaging (FRET-FLIM), using Nicotiana benthamiana leaves and Arabidopsis thaliana cell culture protoplasts as transient expression systems.


Asunto(s)
Arabidopsis , Transferencia Resonante de Energía de Fluorescencia , Arabidopsis/genética , Técnicas de Cultivo de Célula , Colorantes , Nicotiana/genética
17.
Methods Mol Biol ; 2772: 207-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411816

RESUMEN

Protein-protein interactions (PPIs) play fundamental roles in all cellular processes. Especially membrane proteins facilitate a range of important biological functions in stimuli perception, signalling, and transport. Here we describe a detailed protocol for the yeast mating-based Split-Ubiquitin System (mbSUS) to study PPIs of ER membrane proteins in vivo. In contrast to the prominent yeast two hybrid, mbSUS enables analysis of full-length membrane proteins in their native cellular context. The system is based on the ubiquitin proteasome pathway leading to the release of an artificial transcription factor followed by activation of reporter genes to visualize PPIs. The mating-based approach is suitable for both small- and large-scale interaction studies. Additionally, we describe protocols to apply the recently established SUS Bridge assay (SUB), which is optimized for the detection of ternary protein interactions.


Asunto(s)
Saccharomyces cerevisiae , Ubiquitina , Saccharomyces cerevisiae/genética , Comunicación Celular , Retículo Endoplásmico , Proteínas de la Membrana
18.
Curr Opin Plant Biol ; 81: 102571, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38896926

RESUMEN

VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.


Asunto(s)
Transporte de Proteínas , Proteínas R-SNARE , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Fusión de Membrana
19.
BMC Bioinformatics ; 14: 105, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23522286

RESUMEN

BACKGROUND: Over the past decades site-directed mutagenesis (SDM) has become an indispensable tool for biological structure-function studies. In principle, SDM uses modified primer pairs in a PCR reaction to introduce a mutation in a cDNA insert. DpnI digestion of the reaction mixture is used to eliminate template copies before amplification in E. coli; however, this process is inefficient resulting in un-mutated clones which can only be distinguished from mutant clones by sequencing. RESULTS: We have developed a program - 'SDM-Assist' which creates SDM primers adding a specific identifier: through additional silent mutations a restriction site is included or a previous one removed which allows for highly efficient identification of 'mutated clones' by a simple restriction digest. CONCLUSIONS: The direct identification of SDM clones will save time and money for researchers. SDM-Assist also scores the primers based on factors such as Tm, GC content and secondary structure allowing for simplified selection of optimal primer pairs.


Asunto(s)
Cartilla de ADN/química , Mutagénesis Sitio-Dirigida/métodos , Programas Informáticos , Algoritmos , Proteínas de Arabidopsis/genética , Enzimas de Restricción del ADN , Escherichia coli/genética , Reacción en Cadena de la Polimerasa/métodos , Canales de Potasio/genética
20.
J Biol Chem ; 287(44): 37330-9, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22902780

RESUMEN

Recently, mutations in the DNAJC5 gene encoding cysteine-string protein α (CSPα) were identified to cause the neurodegenerative disorder adult-onset neuronal ceroid lipofuscinosis. The disease-causing mutations (L115R or ΔL116) occur within the cysteine-string domain, a region of the protein that is post-translationally modified by extensive palmitoylation. Here we demonstrate that L115R and ΔL116 mutant proteins are mistargeted in neuroendocrine cells and form SDS-resistant aggregates, concordant with the properties of other mutant proteins linked to neurodegenerative disorders. The mutant aggregates are membrane-associated and incorporate palmitate. Indeed, co-expression of palmitoyltransferase enzymes promoted the aggregation of the CSPα mutants, and chemical depalmitoylation solubilized the aggregates, demonstrating that aggregation is induced and maintained by palmitoylation. In agreement with these observations, SDS-resistant CSPα aggregates were present in brain samples from patients carrying the L115R mutation and were depleted by chemical depalmitoylation. In summary, this study identifies a novel interplay between genetic mutations and palmitoylation in driving aggregation of CSPα mutant proteins. We propose that this palmitoylation-induced aggregation of mutant CSPα proteins may underlie the development of adult-onset neuronal ceroid lipofuscinosis in affected families.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Lipoilación , Proteínas de la Membrana/genética , Mutación Missense , Lipofuscinosis Ceroideas Neuronales/genética , Procesamiento Proteico-Postraduccional , Aciltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Corteza Cerebral/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Lipofuscinosis Ceroideas Neuronales/metabolismo , Células PC12 , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA