Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endovasc Ther ; 30(3): 461-470, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35255747

RESUMEN

BACKGROUND: Air embolism (AE), especially when affecting the brain, is an underrated and potentially life-threatening complication in various endovascular interventions. This study aims to investigate experimental AEs using a new model to generate micro air bubbles (MAB), to assess the impact of a catheter on these MAB, and to demonstrate the applicability of this model in vivo. MATERIALS AND METHODS: Micro air bubbles were created using a system based on microfluidic channels. The MAB were detected and analyzed automatically. Micro air bubbles, with a target size of 85 µm, were generated and injected through a microcatheter. The MAB diameters proximal and distal to the catheter were assessed and compared. In a subsequent in vivo application, 2000 MAB were injected into the aorta (at the aortic valve) and into the common carotid artery (CCA) of a rat, respectively, using a microcatheter, resembling AE occurring during cardiovascular interventions. RESULTS: Micro air bubbles with a highly calibrated size could be successfully generated (median: 85.5 µm, SD 1.9 µm). After passage of the microcatheter, the MAB were similar in diameter (median: 86.6 µm) but at a lower number (60.1% of the injected MAB) and a substantially higher scattering of diameters (SD 29.6 µm). In vivo injection of MAB into the aorta resulted in cerebral microinfarctions in both hemispheres, whereas injection into the CCA caused exclusively ipsilateral microinfarctions. CONCLUSION: Using this new AE model, MAB can be generated precisely and reproducibly, resulting in cerebral microinfarctions. This model is feasible for further studies on the pathophysiology and prevention of AE in cardiovascular procedures.


Asunto(s)
Embolia Aérea , Ratas , Animales , Embolia Aérea/diagnóstico por imagen , Embolia Aérea/etiología , Embolia Aérea/prevención & control , Resultado del Tratamiento , Encéfalo , Aorta/diagnóstico por imagen , Arteria Carótida Común
2.
Clin Neuroradiol ; 34(1): 135-145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37665351

RESUMEN

PURPOSE: Cerebral infarctions caused by air embolisms (AE) are a feared risk in endovascular procedures; however, the relevance and pathophysiology of these AEs is still largely unclear. The objective of this study was to investigate the impact of the origin (aorta, carotid artery or right atrium) and number of air bubbles on cerebral infarctions in an experimental in vivo model. METHODS: In 20 rats 1200 or 2000 highly calibrated micro air bubbles (MAB) with a size of 85 µm were injected at the aortic valve (group Ao), into the common carotid artery (group CA) or into the right atrium (group RA) using a microcatheter via a transfemoral access, resembling endovascular interventions in humans. Magnetic resonance imaging (MRI) using a 9.4T system was performed 1 h after MAB injection followed by finalization. RESULTS: The number (5.5 vs. 5.5 median) and embolic patterns of infarctions did not significantly differ between groups Ao and CA. The number of infarctions were significantly higher comparing 2000 and 1200 injected MABs (6 vs. 4.5; p < 0.001). The infarctions were significantly larger for group CA (median infarction volume: 0.41 mm3 vs. 0.19 mm3; p < 0.001). In group RA and in the control group no infarctions were detected. Histopathological analyses showed early signs of ischemic stroke. CONCLUSION: Iatrogenic AEs originating at the ascending aorta cause a similar number and pattern of cerebral infarctions compared to those with origin at the carotid artery. These findings underline the relevance and potential risk of AE occurring during endovascular interventions at the aortic valve and ascending aorta.


Asunto(s)
Embolia Aérea , Procedimientos Endovasculares , Humanos , Ratas , Animales , Embolia Aérea/diagnóstico por imagen , Embolia Aérea/etiología , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/etiología , Imagen por Resonancia Magnética , Procedimientos Endovasculares/efectos adversos , Enfermedad Iatrogénica
3.
J Neurointerv Surg ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673679

RESUMEN

BACKGROUND: Cerebral infarctions resulting from iatrogenic air embolism (AE), mainly caused by small air bubbles, are a well-known and often overlooked event in endovascular interventions. Despite their significance, the underlying pathophysiology remains largely unclear. METHODS: In 24 rats, AEs were induced using a microcatheter, positioned in the carotid artery via femoral access. Rats were divided into two study groups, based on the size of the bubbles (85 and 120 µm) and two sub-groups, differing in air volume (0.39 and 0.64 µl). Ultra-high-field magnetic resonance imaging (MRI) was performed 1.5 hours after intervention. MRI findings including the number, single volume and total volume of the infarctions were assessed. A software-based numerical simulation was performed to qualitatively assess the microvascular pathomechanisms. RESULTS: In the study groups 22 of 24 rats (92%) revealed cerebral infarctions. The number of infarctions per rat was higher for the smaller bubbles, for the lower (medians: 5 vs 3; p=0.049) and higher air volume sub-groups (medians: 6 vs 4; p=0.012). Correspondingly, total infarction volume was higher for the smaller bubbles (1.67 vs 0.5 mm³; p=0.042). Simulations confirmed the results of the experiments and suggested that fusion of microbubbles to larger bubbles is the underlying pathomechanism of vascular occlusions. CONCLUSION: In iatrogenic AE, the size of the bubbles can have a major impact on the number and total volume of cerebral infarctions. These findings can help to better understand the pathophysiology of this frequent, often underestimated adverse event in endovascular interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA