Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658973

RESUMEN

A lack of information on the intestinal microbiome of neonatal calves prevents the use of microbial intervention strategies to improve calf gut health. This study profiled the taxonomic and functional composition of the small intestinal luminal microbiome of neonatal calves using whole-genome sequencing of the metagenome, aiming to understand the dynamics of microbial establishment during early life. Despite highly individualized microbial communities, we identified two distinct taxonomy-based clusters from the collective luminal microbiomes comprising a high level of either Lactobacillus or Bacteroides Among the clustered microbiomes, Lactobacillus-dominant ileal microbiomes had significantly lower abundances of Bacteroides, Prevotella, Roseburia, Ruminococcus, and Veillonella compared to the Bacteroides-dominated ileal microbiomes. In addition, the upregulated ileal genes of the Lactobacillus-dominant calves were related to leukocyte and lymphocyte chemotaxis, the cytokine/chemokine-mediated signaling pathway, and inflammatory responses, while the upregulated ileal genes of the Bacteroides-dominant calves were related to cell adhesion, response to stimulus, cell communication and regulation of mitogen-activated protein kinase cascades. The functional profiles of the luminal microbiomes also revealed two distinct clusters consisting of functions related to either high protein metabolism or sulfur metabolism. A lower abundance of Bifidobacterium and a higher abundance of sulfur-reducing bacteria (SRB) were observed in the sulfur metabolism-dominant cluster (0.2% ± 0.1%) compared to the protein metabolism-dominant cluster (12.6% ± 5.7%), suggesting an antagonistic relationship between SRB and Bifidobacterium, which both compete for cysteine. These distinct taxonomic and functional clusters may provide a framework to further analyze interactions between the intestinal microbiome and the immune function and health of neonatal calves.IMPORTANCE Dietary interventions to manipulate neonatal gut microbiota have been proposed to generate long-term impacts on hosts. Currently, our understanding of the early gut microbiome of neonatal calves is limited to 16S rRNA gene amplicon based microbial profiling, which is a barrier to developing dietary interventions to improve calf gut health. The use of a metagenome sequencing-based approach in the present study revealed high individual animal variation in taxonomic and functional abundance of intestinal microbiome and potential impacts of early microbiome on mucosal immune responses during the preweaning period. During this developmental period, age- and diet-related changes in microbial diversity, richness, density, and the abundance of taxa and functions were observed. A correlation-based approach to further explore the individual animal variation revealed potential enterotypes that can be linked to calf gut health, which may pave the way to developing strategies to manipulate the microbiome and improve calf health.


Asunto(s)
Animales Recién Nacidos/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Intestino Delgado/microbiología , Animales , Bacterias/genética , Bovinos , ADN Bacteriano/genética , Heces/microbiología , Femenino , Masculino , Metagenoma , Filogenia , ARN Ribosómico 16S/genética
2.
J Gen Virol ; 98(7): 1831-1842, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28675355

RESUMEN

Invitro investigations have identified a variety of mechanisms by which herpesviruses evade interferon-stimulated antiviral effector mechanisms. However, these immune evasion mechanisms have not been evaluated during a bovine herpesvirus-1 (BHV-1) infection. This study investigated the transcription and secretion of type I and II interferons (IFNs) and the transcription of IFN-stimulated genes (ISGs) during a primary BHV-1 infection of the upper respiratory tract (URT) in naïve calves. IFN-α, -ß and -γ transcription in nasal turbinates and protein levels in nasal secretions increased following infection. Increased IFN type I and II secretion was detected 3 days post-infection (p.i.) and IFN production increased in parallel with virus shedding. Expression of ISGs, including Mx1, OAS and BST-2, also increased significantly (P<0.05) in nasal turbinates on day 3 p.i. and elevated ISG expression persisted throughout the period of viral shedding. In contrast, RNAase L gene expression was not induced during the BHV-1 infection in the nasal turbinates, but was induced on day 10 p.i. in the trachea. In vitro studies confirmed that recombinant bovine (rBo)IFN-α, -ß and -γ induced expression of Mx1, OAS and BST-2, but decreased RNAse L transcript in bovine epithelial cells. Relative to vesicular stomatitisvirus (VSV), BHV-1 was resistant to the antiviral activity of rBoIFN-α and -γ, but treatment of epithelial cells with 10 ng rBoIFN-ß ml-1 effected an 80 % inhibition of BHV-1 replication and complete inhibition of VSV replication. These observations confirm that the transcription and translation of type I and II IFNs increase during BHV-1 infection, while the transcription of some ISGs is not inhibited.


Asunto(s)
Enfermedades de los Bovinos/genética , Herpesvirus Bovino 1/fisiología , Factores Reguladores del Interferón/genética , Interferones/genética , Infecciones del Sistema Respiratorio/genética , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Herpesvirus Bovino 1/genética , Factores Reguladores del Interferón/inmunología , Interferones/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Replicación Viral
3.
BMC Genomics ; 17(1): 602, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515123

RESUMEN

BACKGROUND: Postnatal development of the mammalian mucosal immune system is crucial for responding to the rapid colonization by commensal bacteria and possible exposure to pathogens. This study analyzed expression patterns for mRNAs and their relationship with microRNAs (miRNAs) in the bovine small intestine during the critical neonatal period (0 to 42 days). This analysis revealed molecular mechanisms regulating the postnatal development of the intestinal mucosal immune system. RESULTS: Small intestine samples (jejunum and ileum) were collected from newborn male, Holstein calves immediately post-partum (n = 3) and at 7 (n = 5), 21 (n = 5), and 42 (n = 5) days of age and the transcriptomes were profiled using RNA-Seq. When analyzing all time points collectively, greater expression of genes encoding the complement functional pathway, as well as lower expression of genes encoding Toll-like receptors and NOD-like receptors were observed in the jejunum when compared to the ileum. In addition, significant changes in the expression of immune-related genes were detected within the first week post-partum in both jejunum and ileum. For example, increased expression of genes encoding tight junction proteins (claudin 1, claudin 4 and occludin), an antimicrobial peptide (Regenerating Islet-Derived 3-γ), NOD-like receptors (NACHT, LRR and PYD domain-containing protein 3), regulatory T cell marker (forkhead box P3), and both anti-inflammatory (interleukin 10) and pro-inflammatory (interleukin 8) cytokines was observed throughout the small intestine of 7-day-old calves when compared to newborn calves. Moreover, the expression of mucosal immune-related genes were either positively or negatively correlated with total bacterial population depending on both intestinal region and age. The integrated analysis of miRNAs and mRNAs supported the conclusion that miRNAs may regulate temporal changes in the expression of genes encoding tight junction proteins (miR-335), cytokines (miR-335) and bacterial recognition (miR-100) during the first week of small intestine development. CONCLUSION: The rapid development of transcriptional differences between jejunum and ileum reveal that these two intestinal regions make distinct contributions to the intestinal mucosal immune system during the early neonatal period. In addition, transcriptome analysis indicates that the first week after birth is a very dynamic developmental period for the intestinal mucosal immune system and these changes may be regulated by both miRNAs and microbial colonization. Findings from this study indicate that a detailed analysis of both the abundance and diversity of the colonizing microbiome may be necessary to understand factors regulating the rapid development of the mucosal immune system during the first week of life.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Regulación del Desarrollo de la Expresión Génica , Inmunidad Mucosa/genética , Mucosa Intestinal/inmunología , MicroARNs/inmunología , ARN Mensajero/inmunología , Transcriptoma/inmunología , Animales , Animales Recién Nacidos , Bovinos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Íleon/crecimiento & desarrollo , Íleon/inmunología , Íleon/microbiología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/microbiología , Yeyuno/crecimiento & desarrollo , Yeyuno/inmunología , Yeyuno/microbiología , Masculino , MicroARNs/genética , Proteínas NLR/genética , Proteínas NLR/inmunología , Especificidad de Órganos/inmunología , ARN Mensajero/genética , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , alfa-Defensinas/genética , alfa-Defensinas/inmunología
4.
Retrovirology ; 13(1): 33, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27141823

RESUMEN

BACKGROUND: Bovine Leukemia Virus (BLV) is a deltaretrovirus closely related to the Human T cell leukemia virus-1 (HTLV-1). Cattle are the natural host of BLV where it integrates into B-cells, producing a lifelong infection. Most infected animals remain asymptomatic but following a protracted latency period about 5 % develop an aggressive leukemia/lymphoma, mirroring the disease trajectory of HTLV-1. The mechanisms by which these viruses provoke cellular transformation remain opaque. In both viruses little or no transcription is observed from the 5'LTR in tumors, however the proviruses are not transcriptionally silent. In the case of BLV a cluster of RNA polymerase III transcribed microRNAs are highly expressed, while the HTLV-1 antisense transcript HBZ is consistently found in all tumors examined. RESULTS: Here, using RNA-seq, we demonstrate that the BLV provirus also constitutively expresses antisense transcripts in all leukemic and asymptomatic samples examined. The first transcript (AS1) can be alternately polyadenylated, generating a transcript of ~600 bp (AS1-S) and a less abundant transcript of ~2200 bp (AS1-L). Alternative splicing creates a second transcript of ~400 bp (AS2). The coding potential of AS1-S/L is ambiguous, with a small open reading frame of 264 bp, however the transcripts are primarily retained in the nucleus, hinting at a lncRNA-like role. The AS1-L transcript overlaps the BLV microRNAs and using high throughput sequencing of RNA-ligase-mediated (RLM) 5'RACE, we show that the RNA-induced silencing complex (RISC) cleaves AS1-L. Furthermore, experiments using altered BLV proviruses with the microRNAs either deleted or inverted point to additional transcriptional interference between the two viral RNA species. CONCLUSIONS: The identification of novel viral antisense transcripts shows the BLV provirus to be far from silent in tumors. Furthermore, the consistent expression of these transcripts in both leukemic and nonmalignant clones points to a vital role in the life cycle of the virus and its tumorigenic potential. Additionally, the cleavage of the AS1-L transcript by the BLV encoded microRNAs and the transcriptional interference between the two viral RNA species suggest a shared role in the regulation of BLV.


Asunto(s)
Virus de la Leucemia Bovina/genética , Leucemia de Células B/virología , Linfoma de Células B/virología , MicroARNs/genética , ARN sin Sentido/genética , ARN Viral/genética , Transcripción Genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Bovinos , Leucosis Bovina Enzoótica/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/metabolismo , ARN Viral/metabolismo , Proteínas de los Retroviridae/genética , Ovinos , Secuencias Repetidas Terminales
5.
Cell Tissue Res ; 363(2): 479-90, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26299200

RESUMEN

Beta-defensin 103 (DEFB103) shares little homology with 8 other members of the bovine beta-defensin family and in other species DEFB103 protein has diverse functions, including antimicrobial activity, a chemoattractant for dendritic cells, enhancing epithelial wound repair and regulating hair colour. Expression of the bovine DEFB103 gene was surveyed in 27 tissues and transcript was most abundant in tissues with stratified squamous epithelium. Oral cavity epithelial tissues and nictitating membrane consistently expressed high levels of DEFB103 gene transcript. An age-dependent decrease (P < 0.05) in DEFB103 gene expression was only observed for buccal epithelium when comparing healthy 10- to 14-day-old and 10- to 12-month-old calves. A bovine herpesvirus-1 respiratory infection did, however, significantly (P < 0.05) up-regulate DEFB103 gene expression in the buccal epithelium of 6- to 8-month-old calves. Finally, DEFB103 transcript was low in lymph nodes draining the skin and at the limit of detection in other internal organs such as lung, intestine and kidney. Affinity-purified rabbit antisera to bovine DEFB103 was used to identify cells expressing DEFB103 protein within tissues with stratified squamous epitheliums. DEFB103 protein was most abundant in basal epithelial cells and was present in these cells prior to birth. Beta-defensins have been identified as regulators of dendritic cell (DC) chemokine responses and we observed a close association between DCs and epithelial cells expressing DEFB103 in both the fetus and newborn calf. In conclusion, bovine DEFB103 gene expression is most abundant in stratified squamous epithelium with DEFB103 protein localised to basal epithelial cells. These observations are consistent with proposed roles for DEFB103 in DC recruitment and repair of stratified squamous epithelium.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Especificidad de Órganos/genética , beta-Defensinas/genética , beta-Defensinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Bovinos , Femenino , Perfilación de la Expresión Génica , Inmunohistoquímica , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Virosis/genética , beta-Defensinas/química
6.
Nat Rev Immunol ; 3(1): 79-84, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12511878

RESUMEN

The main advances in immunology have been forged or underpinned by animal experiments. However, animal research now focuses excessively on one laboratory species, and there is too much redundant repetition and too few transfers from basic discovery to successful clinical application. These features can be improved markedly by placing more emphasis on biological relevance when evaluating animal models and by taking greater advantage of the unique experimental opportunities that are offered by large animals.


Asunto(s)
Alergia e Inmunología , Modelos Animales , Animales , Humanos , Ovinos , Porcinos
7.
Bioinformatics ; 29(13): 1693-5, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23658419

RESUMEN

SUMMARY: While many experimentally characterized phosphorylation sites exist for certain organisms, such as human, rat and mouse, few sites are known for other organisms, hampering related research efforts. We have developed a software pipeline called DAPPLE that automates the process of using known phosphorylation sites from other organisms to identify putative sites in an organism of interest. AVAILABILITY: DAPPLE is available as a web server at http://saphire.usask.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Fosfoproteínas/química , Fosfoproteínas/metabolismo , Programas Informáticos , Animales , Bovinos , Humanos , Fosforilación , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
8.
Appl Environ Microbiol ; 80(6): 2021-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441166

RESUMEN

Bacterial colonization in the gastrointestinal tracts (GIT) of preweaned calves is very important, since it can influence early development and postweaning performance and health. This study investigated the composition of the bacteria along the GIT (rumen, jejunum, ileum, cecum, and colon) of preweaned bull calves (3 weeks old) using pyrosequencing to understand the segregation of bacteria between the mucosal surface and digesta. Phylogenetic analysis revealed that a total of 83 genera belonging to 13 phyla were distributed throughout the GIT of preweaned calves, with the Firmicutes, Bacteroidetes, and Proteobacteria predominating. Quantitative PCR (qPCR) analysis of selected abundant bacterial genera (Prevotella, Bacteroides, Lactobacillus, and Faecalibacterium) revealed that their prevalence was significantly different among the GIT regions and between mucosa- and digesta-associated communities. Rumens contained the most diverse bacterial population, consisting of 47 genera, including 16 rumen-specific genera, followed by the large intestine and then the small intestine. Bacterial species richness was higher at the mucosal surface than in the local digesta, with the exception of the rumen. The majority of bacteria found on the rumen epithelial surface and within the small intestine could not be identified due to a lack of known genus-level information. Thus, future studies will be required to fully characterize the microbiome during the development of the rumens and the mucosal immune systems of newborn calves. This is the first study to analyze in depth the bacterial composition of the GIT microbiome in preweaned calves, which extends previous findings regarding early rumen colonization and bacterial segregation between mucosa- and digesta-associated microbial communities.


Asunto(s)
Bacterias/clasificación , Tracto Gastrointestinal/microbiología , Microbiota , Membrana Mucosa/microbiología , Animales , Bacterias/genética , Carga Bacteriana , Bovinos , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
9.
Vet Res ; 45: 54, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24885748

RESUMEN

Johne's disease (JD) is a chronic enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP). The high economic cost and potential zoonotic threat of JD have driven efforts to develop tools and approaches to effectively manage this disease within livestock herds. Efforts to control JD through traditional animal management practices are complicated by MAP's ability to cause long-term environmental contamination as well as difficulties associated with diagnosis of JD in the pre-clinical stages. As such, there is particular emphasis on the development of an effective vaccine. This is a daunting challenge, in large part due to MAP's ability to subvert protective host immune responses. Accordingly, there is a priority to understand MAP's interaction with the bovine host: this may inform rational targets and approaches for therapeutic intervention. Here we review the early host defenses encountered by MAP and the strategies employed by the pathogen to avert or subvert these responses, during the critical period between ingestion and the establishment of persistent infection in macrophages.


Asunto(s)
Enfermedades de los Bovinos/inmunología , Inmunidad Innata , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/inmunología , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/transmisión , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Paratuberculosis/microbiología , Paratuberculosis/transmisión
10.
Vet Immunol Immunopathol ; 272: 110758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669937

RESUMEN

Polymorphonuclear cells (PMN) provide a rapid response to infection and tissue damage and stress can modify these critical innate immune defences. The study of adrenergic receptor (AR) expression and function in bovine PMNs is limited but both neutrophils and eosinophils express numerous AR genes but differ significantly in their expression of individual AR genes. A flow cytometric technique was developed to differentiate between bovine neutrophils and eosinophils so both neutrophil and eosinophil responses to adrenergic agonists could be analysed. Neutrophils and eosinophils displayed significantly different changes in CD11b, L-selectin, and CD44 expression when activated by bovine serum opsonized zymosan and recombinant bovine interferon gamma. The responses of activated and resting neutrophils and eosinophils were then compared following stimulation with endogenous adrenergic agonists, epinephrine (E) norepinephrine (NE), and synthetic agonists targeting α1-, α2-, or ß-ARs. Both resting and activated neutrophils and eosinophils displayed differences in iROS, CD44, and L-selectin expression following stimulation with E and NE. Resting neutrophils displayed pro-inflammatory responses to both E and NE, while resting eosinophils displayed a pro-inflammatory response to only NE. No single synthetic adrenergic agonist fully recapitulated responses observed with either E or NE and responses to adrenergic agonists were dose-dependent. In conclusion, bovine eosinophils and neutrophils responded to multiple adrenergic agonists by altering expression of proteins involved in immune surveillance and pro-inflammatory responses. Significant differences in neutrophil and eosinophil responses to adrenergic agonists are consistent with their differences in AR gene expression. This highlights the importance of analysing separately these two PMN subpopulations when investigating the effects of either endogenous or synthetic AR agonists.


Asunto(s)
Eosinófilos , Epinefrina , Selectina L , Neutrófilos , Norepinefrina , Animales , Bovinos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Norepinefrina/farmacología , Epinefrina/farmacología , Agonistas Adrenérgicos/farmacología , Receptores de Hialuranos/genética , Citometría de Flujo , Antígeno CD11b , Activación Neutrófila/efectos de los fármacos , Receptores Adrenérgicos
11.
Am J Vet Res ; 85(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38457927

RESUMEN

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Asunto(s)
Administración Intranasal , Animales Recién Nacidos , Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , Vacunas Atenuadas , Vacunas Virales , Animales , Bovinos , Herpesvirus Bovino 1/inmunología , Administración Intranasal/veterinaria , Masculino , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Coronavirus Bovino/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Rinotraqueítis Infecciosa Bovina/prevención & control , Rinotraqueítis Infecciosa Bovina/inmunología , Esparcimiento de Virus , Anticuerpos Antivirales/sangre , Distribución Aleatoria
12.
Infect Immun ; 81(8): 2861-72, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716614

RESUMEN

Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease (JD) in cattle. M. avium subsp. paratuberculosis infects the gastrointestinal tract of calves, localizing and persisting primarily in the distal ileum. A high percentage of cattle exposed to M. avium subsp. paratuberculosis do not develop JD, but the mechanisms by which they resist infection are not understood. Here, we merge an established in vivo bovine intestinal segment model for M. avium subsp. paratuberculosis infection with bovine-specific peptide kinome arrays as a first step to understanding how infection influences host kinomic responses at the site of infection. Application of peptide arrays to in vivo tissue samples represents a critical and ambitious step in using this technology to understand host-pathogen interactions. Kinome analysis was performed on intestinal samples from 4 ileal segments subdivided into 10 separate compartments (6 M. avium subsp. paratuberculosis-infected compartments and 4 intra-animal controls) using bovine-specific peptide arrays. Kinome data sets clustered into two groups, suggesting unique binary responses to M. avium subsp. paratuberculosis. Similarly, two M. avium subsp. paratuberculosis-specific immune responses, characterized by different antibody, T cell proliferation, and gamma interferon (IFN-γ) responses, were also observed. Interestingly, the kinomic groupings segregated with the immune response groupings. Pathway and gene ontology analyses revealed that differences in innate immune and interleukin signaling and particular differences in the Wnt/ß-catenin pathway distinguished the kinomic groupings. Collectively, kinome analysis of tissue samples offers insight into the complex cellular responses induced by M. avium subsp. paratuberculosis in the ileum and provides a novel method to understand mechanisms that alter the balance between cell-mediated and antibody responses to M. avium subsp. paratuberculosis infection.


Asunto(s)
Mucosa Intestinal/microbiología , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/inmunología , Paratuberculosis/microbiología , Transcriptoma , Animales , Bovinos , Modelos Animales de Enfermedad , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Análisis por Micromatrices , Moco/metabolismo , Mycobacterium avium subsp. paratuberculosis/metabolismo , Mycobacterium avium subsp. paratuberculosis/patogenicidad , Paratuberculosis/metabolismo , Fosfotransferasas/biosíntesis
13.
Infect Immun ; 81(1): 226-37, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115040

RESUMEN

Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle. The complex, multifaceted interaction of M. avium subsp. paratuberculosis with its host includes dampening the ability of infected cells to respond to stimuli that promote M. avium subsp. paratuberculosis clearance. By disrupting host defenses, M. avium subsp. paratuberculosis creates an intracellular environment that favors the establishment and maintenance of infection. Toll-like receptors (TLRs) are important sensors that initiate innate immune responses to microbial challenge and are also immunotherapeutic targets. For example, TLR9 contributes to host defense against M. avium subsp. paratuberculosis, and its agonists (CpG oligodeoxynucleotides [ODNs]) are under investigation for treatment of Johne's disease and other infections. Here we demonstrate that M. avium subsp. paratuberculosis infection changes the responsiveness of bovine monocytes to TLR9 stimulation. M. avium subsp. paratuberculosis inhibits classical TLR9-mediated responses despite a 10-fold increase in TLR9 expression and maintained uptake of CpG ODNs. Other TLR9-mediated responses, such as oxidative burst, which occur through noncanonical signaling, remain functional. Kinome analysis verifies that classic TLR9 signaling is blocked by M. avium subsp. paratuberculosis infection and that signaling instead proceeds through a Pyk2-mediated mechanism. Pyk2-mediated signaling does not hinder infection, as CpG ODNs fail to promote M. avium subsp. paratuberculosis clearance. Indeed, Pyk2 signaling appears to be an important aspect of M. avium subsp. paratuberculosis infection, as Pyk2 inhibitors significantly reduce the number of intracellular M. avium subsp. paratuberculosis bacteria. The actions of M. avium subsp. paratuberculosis on TLR9 signaling may represent a strategy to generate a host environment which is better suited for infection, revealing potential new targets for therapeutic intervention.


Asunto(s)
Monocitos/inmunología , Monocitos/microbiología , Mycobacterium avium subsp. paratuberculosis/metabolismo , Paratuberculosis/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/microbiología , Quinasa 2 de Adhesión Focal/inmunología , Quinasa 2 de Adhesión Focal/metabolismo , Interleucina-10/inmunología , Interleucina-10/metabolismo , Monocitos/metabolismo , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/inmunología , Paratuberculosis/microbiología , Estallido Respiratorio/inmunología , Transducción de Señal/inmunología
14.
BMC Genomics ; 14: 854, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314169

RESUMEN

BACKGROUND: Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Despite the intimate relationship between kinases and health, little is known about the variability, consistency and stability of kinome profiles across species and individuals. RESULTS: As a preliminary investigation of the existence of species- and individual-specific kinotypes (kinome signatures), peptide arrays were employed for the analysis of peripheral blood mononuclear cells collected weekly from human and porcine subjects (n = 6) over a one month period. The data revealed strong evidence for species-specific signalling profiles. Both humans and pigs also exhibited evidence for individual-specific kinome profiles that were independent of natural changes in blood cell populations. CONCLUSIONS: Species-specific kinotypes could have applications in disease research by facilitating the selection of appropriate animal models or by revealing a baseline kinomic signature to which treatment-induced profiles could be compared. Similarly, individual-specific kinotypes could have implications in personalized medicine, where the identification of molecular patterns or signatures within the kinome may depend on both the levels of kinome diversity and temporal stability across individuals.


Asunto(s)
Leucocitos Mononucleares/enzimología , Fosfotransferasas/metabolismo , Proteoma , Proteómica , Adulto , Animales , Análisis por Conglomerados , Activación Enzimática , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Péptidos/genética , Péptidos/metabolismo , Fosfotransferasas/genética , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Especificidad de la Especie , Porcinos , Adulto Joven
15.
Infect Immun ; 80(9): 3039-48, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22689821

RESUMEN

Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle and may have implications for human health. Establishment of chronic infection by M. avium subsp. paratuberculosis depends on its subversion of host immune responses. This includes blocking the ability of infected macrophages to be activated by gamma interferon (IFN-γ) for clearance of this intracellular pathogen. To define the mechanism by which M. avium subsp. paratuberculosis subverts this critical host cell function, patterns of signal transduction to IFN-γ stimulation of uninfected and M. avium subsp. paratuberculosis-infected bovine monocytes were determined through bovine-specific peptide arrays for kinome analysis. Pathway analysis of the kinome data indicated activation of the JAK-STAT pathway, a hallmark of IFN-γ signaling, in uninfected monocytes. In contrast, IFN-γ stimulation of M. avium subsp. paratuberculosis-infected monocytes failed to induce patterns of peptide phosphorylation consistent with JAK-STAT activation. The inability of IFN-γ to induce differential phosphorylation of peptides corresponding to early JAK-STAT intermediates in infected monocytes indicates that M. avium subsp. paratuberculosis blocks responsiveness at, or near, the IFN-γ receptor. Consistent with this hypothesis, increased expression of negative regulators of the IFN-γ receptors SOCS1 and SOCS3 as well as decreased expression of IFN-γ receptor chains 1 and 2 is observed in M. avium subsp. paratuberculosis-infected monocytes. These patterns of expression are functionally consistent with the kinome data and offer a mechanistic explanation for this critical M. avium subsp. paratuberculosis behavior. Understanding this mechanism may contribute to the rational design of more effective vaccines and/or therapeutics for Johne's disease.


Asunto(s)
Interferón gamma/antagonistas & inhibidores , Monocitos/inmunología , Monocitos/microbiología , Mycobacterium avium subsp. paratuberculosis/patogenicidad , Paratuberculosis/inmunología , Paratuberculosis/microbiología , Receptores de Interferón/antagonistas & inhibidores , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/microbiología , Interferón gamma/inmunología , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/patología , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de Interferón/inmunología , Transducción de Señal
16.
Vet Res ; 43: 21, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22435642

RESUMEN

A variety of mechanisms contribute to the viral-bacterial synergy which results in fatal secondary bacterial respiratory infections. Epidemiological investigations have implicated physical and psychological stressors as factors contributing to the incidence and severity of respiratory infections and psychological stress alters host responses to experimental viral respiratory infections. The effect of stress on secondary bacterial respiratory infections has not, however, been investigated. A natural model of secondary bacterial respiratory infection in naive calves was used to determine if weaning and maternal separation (WMS) significantly altered mortality when compared to calves pre-adapted (PA) to this psychological stressor. Following weaning, calves were challenged with Mannheimia haemolytica four days after a primary bovine herpesvirus-1 (BHV-1) respiratory infection. Mortality doubled in WMS calves when compared to calves pre-adapted to weaning for two weeks prior to the viral respiratory infection. Similar results were observed in two independent experiments and fatal viral-bacterial synergy did not extend beyond the time of viral shedding. Virus shedding did not differ significantly between treatment groups but innate immune responses during viral infection, including IFN-γ secretion, the acute-phase inflammatory response, CD14 expression, and LPS-induced TNFα production, were significantly greater in WMS versus PA calves. These observations demonstrate that weaning and maternal separation at the time of a primary BHV-1 respiratory infection increased innate immune responses that correlated significantly with mortality following a secondary bacterial respiratory infection.


Asunto(s)
Coinfección/mortalidad , Herpesvirus Bovino 1/fisiología , Rinotraqueítis Infecciosa Bovina/mortalidad , Mannheimia haemolytica/fisiología , Pasteurelosis Neumónica/mortalidad , Destete , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Bovinos , Coinfección/inmunología , Coinfección/microbiología , Coinfección/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Regulación de la Expresión Génica , Rinotraqueítis Infecciosa Bovina/inmunología , Rinotraqueítis Infecciosa Bovina/virología , Masculino , Pasteurelosis Neumónica/inmunología , Pasteurelosis Neumónica/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , Distribución Aleatoria , Estrés Fisiológico
17.
Dev Comp Immunol ; 127: 104271, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600023

RESUMEN

The α- and ß-adrenergic receptors (ARs) bind the stress hormones epinephrine (E), norepinephrine (NE), and dopamine and activate diverse physiological responses. A lack of information on AR gene expression in leukocytes limits our understanding of how stress alters immune function. Quantitative analyses of AR gene expression was completed for bovine leukocytes. Individual leukocyte lineages and subpopulations within lineages were isolated with high-speed cell sorting to facilitate a targeted analysis of AR gene expression. These analyses confirmed all 9 AR genes were expressed in bovine leukocytes with marked differences in AR gene expression when comparing among leukocyte lineages. Furthermore, separation of polymorphonuclear cells into neutrophils and eosinophils revealed these key innate immune cells also differ significantly in AR gene expression. This study provides the first comprehensive survey of AR gene expression in immune cells of any mammalian species and provides insight into conflicting reports that stress can either activate or suppress immune function.


Asunto(s)
Leucocitos , Norepinefrina , Animales , Bovinos , Epinefrina/metabolismo , Expresión Génica , Leucocitos/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos beta/metabolismo
18.
Front Vet Sci ; 9: 922992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903142

RESUMEN

Failure to mount an effective immune response to vaccination leaves individuals at risk for infection and can compromise herd immunity. Vaccine unresponsiveness can range from poor responses "low responders" to a failure to seroconvert "non-responders." Biomarkers of vaccine unresponsiveness, particularly those measured at the time of vaccination, could facilitate more strategic vaccination programs. We previously reported that pro-inflammatory cytokine signaling within peripheral blood mononuclear cells, elevated plasma interferon-gamma (IFNγ), and low birth weight correlated with vaccine-induced serum IgG titers in piglets that were below the threshold of detectable seroconversion (vaccine non-responders). These observations suggested that plasma IFNγ concentration and birth weight might serve as pre-vaccination biomarkers of vaccine unresponsiveness. To test this hypothesis, piglets (n = 67) from a different production facility were vaccinated with the same commercial Mycoplasma hyopneumoniae bacterin (RespiSure-One) to determine if there was a consistent and significant association between vaccine-induced serum IgG titers and either plasma cytokine concentrations or birth weight. All piglets seroconverted following vaccination with significantly less variability in vaccine-induced serum IgG titers than observed in the previous vaccine trial. Piglets exhibited highly variable birth weights and plasma cytokine concentrations prior to vaccination, but there were no significant associations (p > 0.05) between these variables and vaccine-induced serum IgG titers. There were significant (p < 0.001) differences in plasma IFNγ concentrations among individual litters (n = 6), and plasma IFNγ concentrations decreased in all pigs from birth to 63-days of age. One of the six litters (n = 11 piglets) exhibited significantly elevated plasma IFNγ concentrations during the first 3 weeks of life (p < 0.001) and at the time of vaccination (p < 0.01). This litter, however, had similar vaccine-induced serum IgG titers when compared to the other piglets in this study. Collectively the two studies indicate that while plasma cytokines and birth weight can be associated with vaccine non-responsiveness, their temporal and individual variation, as well as the complexity of the vaccine responsiveness phenotype, make them inconsistent biomarkers for predicting the less extreme phenotype of vaccine low responders.

19.
Proteomics ; 11(24): 4595-609, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22002874

RESUMEN

Phosphorylation is the predominant mechanism of post-translational modification for regulation of protein function. With central roles in virtually every cellular process, and strong linkages with many diseases, there is a considerable interest in defining, and ultimately controlling, kinase activities. Investigations of human cellular phosphorylation events, which includes over 500 different kinases and tens of thousands of phosphorylation targets, represent a daunting challenge for proteomic researchers and cell biologists alike. As such, there is a priority to develop tools that enable the evaluation of cellular phosphorylation events in a high-throughput, and biologically relevant, fashion. Towards this objective, two distinct, but functionally related, experimental approaches have emerged; phosphoproteome investigations, which focus on the sub-population of proteins which undergo phosphorylation and kinome analysis, which considers the activities of the kinase enzymes mediating these phosphorylation events. Within kinome analysis, peptide arrays have demonstrated considerable potential as a cost-effective, high-throughput approach for defining phosphorylation-mediated signal transduction activity. In particular, a number of recent advances in the application of peptide arrays for kinome analysis have enabled researchers to tackle increasingly complex biological problems in a wider range of species. In this review, recent advances in kinomic analysis utilizing peptides arrays including several of the biological questions studied by our group, as well as outstanding challenges still facing this technology, are discussed.


Asunto(s)
Análisis por Matrices de Proteínas/métodos , Proteínas Quinasas/análisis , Proteómica/métodos , Animales , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo , Péptidos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
20.
Cell Immunol ; 271(2): 428-37, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21917242

RESUMEN

Mucosal dendritic cells (DCs) play a key role in discriminating between dietary antigens, commensal microflora and pathogens but little is known regarding age-related changes in mucosal DC populations. We analyzed lymphoid and myeloid populations within the epithelium and lamina propria (LP) of the ileum and jejunum of weaned calves (6 months old) and compared their frequency and distribution with newborn calves (3-5 weeks old). CD4, CD8 and γδ TcR T cells and CD11c(Hi)MHC Class II(+) myeloid cell frequency were significantly different when comparing ileum and jejunum of weaned calves. In particular, the number of CD8 and γδ TcR T cells, and CD11c(Hi)CD14(+) macrophages was significantly greater in the ileum but CD11c(+) and CD11b(+) myeloid cell distribution was similar throughout the mucosal epithelium of the small intestine. Furthermore, significant age-related changes were apparent when comparing the frequency and abundance of mucosal leukocyte subpopulations in newborn and weaned calves. Total mucosal leukocytes (CD45(+)) increased significantly with age in both ileum and jejunum and much of this increase was attributed to mucosal T cells (CD3(+)). In particular, CD4 T cells and NK cells increased significantly in the jejunum and CD8, and γδ TcR T cells increased significantly with age throughout the small intestine. In contrast, CD11c(Hi)MHC Class II(+) myeloid cells remained numerically unchanged with age but DCs (CD13(+), CD26(+), CD205(+)) were enriched and macrophages (CD14(+), CD172a(+)) were depleted in older animals. Therefore, regional differences between ileal and jejunal mucosal leukocytes changed with age and there was also a marked age-dependent change in the composition of mucosal myeloid cells. These observations have significant implications for host responses to both pathogens and commensal microflora.


Asunto(s)
Envejecimiento/inmunología , Inmunidad Mucosa , Intestino Delgado/inmunología , Células Mieloides/inmunología , Subgrupos de Linfocitos T/inmunología , Envejecimiento/patología , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Bovinos , Íleon/citología , Íleon/inmunología , Inmunohistoquímica , Inmunofenotipificación , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Intestino Delgado/citología , Yeyuno/citología , Yeyuno/inmunología , Masculino , Células Mieloides/citología , Subgrupos de Linfocitos T/citología , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA