Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 22(10): 3135-3148, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672672

RESUMEN

Procalcitonin (PCT) is a biomarker for bacterial sepsis, and accurate quantification of PCT is critical for sepsis diagnosis and treatment. Immunological PCT quantification methods are routinely used in clinical laboratories, yet there is a need for harmonization of PCT quantification protocols. An orthogonal method to clinical immunological assays, such as LC-MS/MS, is required. In this study, a highly sensitive and robust immunoaffinity LC-MRM quantitative method for detecting procalcitonin in human serum has been developed. An initial comparison of immunocapture of PCT with a polyclonal anti-PCT antibody immobilized on polystyrene nanoparticles (Latex) and magnetic beads demonstrated superior performance with magnetic beads. Three tryptic PCT peptides from the N- and C-terminal regions of PCT were selected for LC-MS/MS quantification. For PCT quantification, an LLOQ of 0.25 ng/mL of PCT in human serum was achieved using a sample volume of 1 mL. The method's trueness and precision consistently lie within the 15% margin. The parallel measurement of three PCT peptides may allow future differentiation of intact PCT vs other PCT forms originating from potential degradation, processing, or polymorphisms. An established and validated LC-MRM-based quantification of PCT will be relevant as an orthogonal method for harmonization and standardization of clinical assays for PCT.


Asunto(s)
Polipéptido alfa Relacionado con Calcitonina , Sepsis , Humanos , Polipéptido alfa Relacionado con Calcitonina/uso terapéutico , Poliestirenos/uso terapéutico , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Sepsis/diagnóstico , Biomarcadores , Anticuerpos , Péptidos , Fenómenos Magnéticos
2.
Clin Chem ; 69(3): 262-272, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644921

RESUMEN

BACKGROUND: Elevated concentrations of lipoprotein(a) [Lp(a)] are directly related to an increased risk of cardiovascular diseases, making it a relevant biomarker for clinical risk assessment. However, the lack of global standardization of current Lp(a) measurement procedures (MPs) leads to inconsistent patient care. The International Federation for Clinical Chemistry and Laboratory Medicine working group on quantitating apolipoproteins by mass spectrometry (MS) aims to develop a next-generation SI (International system of units)-traceable reference measurement system consisting of a MS-based, peptide-calibrated reference measurement procedure (RMP) and secondary serum-based reference materials (RMs) certified for their apolipoprotein(a) [apo(a)] content. To reach measurement standardization through this new measurement system, 2 essential requirements need to be fulfilled: a sufficient correlation among the MPs and appropriate commutability of future serum-based RMs. METHODS: The correlation among the candidate RMP (cRMP) and immunoassay-based MPs was assessed by measuring a panel of 39 clinical samples (CS). In addition, the commutability of 14 different candidate RMs was investigated. RESULTS: Results of the immunoassay-based MPs and the cRMPs demonstrated good linear correlations for the CS but some significant sample-specific differences were also observed. The results of the commutability study show that RMs based on unspiked human serum pools can be commutable with CS, whereas human pools spiked with recombinant apo(a) show different behavior compared to CS. CONCLUSIONS: The results of this study show that unspiked human serum pools are the preferred candidate secondary RMs in the future SI-traceable Lp(a) Reference Measurement System.


Asunto(s)
Química Clínica , Lipoproteína(a) , Humanos , Inmunoensayo , Espectrometría de Masas , Estándares de Referencia
3.
Nucleic Acids Res ; 49(11): 6437-6455, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096600

RESUMEN

The biogenesis of small uridine-rich nuclear ribonucleoproteins (UsnRNPs) depends on the methylation of Sm proteins catalyzed by the methylosome and the subsequent action of the SMN complex, which assembles the heptameric Sm protein ring onto small nuclear RNAs (snRNAs). In this sophisticated process, the methylosome subunit pICln (chloride conductance regulatory protein) is attributed to an exceptional key position as an 'assembly chaperone' by building up a stable precursor Sm protein ring structure. Here, we show that-apart from its autophagic role-the Ser/Thr kinase ULK1 (Uncoordinated [unc-51] Like Kinase 1) functions as a novel key regulator in UsnRNP biogenesis by phosphorylation of the C-terminus of pICln. As a consequence, phosphorylated pICln is no longer capable to hold up the precursor Sm ring structure. Consequently, inhibition of ULK1 results in a reduction of efficient UsnRNP core assembly. Thus ULK1, depending on its complex formation, exerts different functions in autophagy or snRNP biosynthesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Línea Celular , Cuerpos Enrollados , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/fisiología , Canales Iónicos/metabolismo , Fosforilación , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958537

RESUMEN

The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly. It is well established that post-translational modifications control UsnRNP biogenesis. In our work presented here, we emphasize the crucial role of Gemin2, showing that the phospho-status of Gemin2 influences the capacity of the SMN complex to condense in Cajal bodies (CBs) in vivo. Additionally, we define Gemin2 as a novel and particular binding partner and phosphorylation substrate of the mTOR pathway kinase ribosomal protein S6 kinase beta-1 (p70S6K). Experiments using size exclusion chromatography further demonstrated that the Gemin2 protein functions as a connecting element between the 6S complex and the SMN complex. As a result, p70S6K knockdown lowered the number of CBs, which in turn inhibited in vivo UsnRNP synthesis. In summary, these findings reveal a unique regulatory mechanism of UsnRNP biogenesis.


Asunto(s)
Proteínas de Unión al ARN , Proteínas Quinasas S6 Ribosómicas 70-kDa , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosforilación , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/genética , Uridina/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446139

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The fast and accurate diagnosis of sepsis by procalcitonin (PCT) has emerged as an essential tool in clinical medicine. Although in use in the clinical laboratory for a long time, PCT quantification has not yet been standardized. The International Federation of Clinical Chemistry working group on the standardization of PCT (IFCC-WG PCT) aims to provide an LC-MS/MS-based reference method as well as the highest metrological order reference material to address this diagnostic need. Here, we present the systematic evaluation of the efficiency of an immuno-enrichment method, based on functionalized Sepharose, magnetic-core, or polystyrene (latex) nano-particles, to quantitatively precipitate PCT from different human sample materials. This method may be utilized for both mass spectrometric and proteomic purposes. In summary, only magnetic-core nano-particles functionalized by polyclonal PCT antibodies can fulfil the necessary requirements of the international standardization of PCT. An optimized method proved significant benefits in quantitative and specific precipitation as well as in the subsequent LC-MS/MS detection of PCT in human serum samples or HeLa cell extract. Based on this finding, further attempts of the PCT standardization process will utilize a magnetic core-derived immuno-enrichment step, combined with subsequent quantitative LC-MS/MS detection.


Asunto(s)
Nanopartículas , Sepsis , Humanos , Polipéptido alfa Relacionado con Calcitonina , Sefarosa , Cromatografía Liquida , Células HeLa , Poliestirenos , Proteómica , Espectrometría de Masas en Tándem , Sepsis/diagnóstico , Anticuerpos , Fenómenos Magnéticos , Biomarcadores
6.
Biol Chem ; 403(10): 907-915, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36040368

RESUMEN

Protein-arginine methylation is a common posttranslational modification, crucial to various cellular processes, such as protein-protein interactions or binding to nucleic acids. The central enzyme of symmetric protein arginine methylation in mammals is the protein arginine methyltransferase 5 (PRMT5). While the methylation reaction itself is well understood, recruitment and differentiation among substrates remain less clear. One mechanism to regulate the diversity of PRMT5 substrate recognition is the mutual binding to the adaptor proteins pICln or RioK1. Here, we describe the specific interaction of Nuclear Factor 90 (NF90) with the PRMT5-WD45-RioK1 complex. We show for the first time that NF90 is symmetrically dimethylated by PRMT5 within the RG-rich region in its C-terminus. Since upregulation of PRMT5 is a hallmark of many cancer cells, the characterization of its dimethylation and modulation by specific commercial inhibitors in vivo presented here may contribute to a better understanding of PRMT5 function and its role in cancer.


Asunto(s)
Proteínas del Factor Nuclear 90 , Proteína-Arginina N-Metiltransferasas , Animales , Arginina/metabolismo , Mamíferos/metabolismo , Metilación , Proteínas del Factor Nuclear 90/genética , Proteínas del Factor Nuclear 90/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
7.
Clin Chem Lab Med ; 59(9): 1507-1515, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33908222

RESUMEN

With an almost unremittent progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all around the world, there is a compelling need to introduce rapid, reliable, and high-throughput testing to allow appropriate clinical management and/or timely isolation of infected individuals. Although nucleic acid amplification testing (NAAT) remains the gold standard for detecting and theoretically quantifying SARS-CoV-2 mRNA in various specimen types, antigen assays may be considered a suitable alternative, under specific circumstances. Rapid antigen tests are meant to detect viral antigen proteins in biological specimens (e.g. nasal, nasopharyngeal, saliva), to indicate current SARS-CoV-2 infection. The available assay methodology includes rapid chromatographic immunoassays, used at the point-of-care, which carries some advantages and drawbacks compared to more conventional, instrumentation-based, laboratory immunoassays. Therefore, this document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 aims to summarize available data on the performance of currently available SARS-CoV-2 antigen rapid detection tests (Ag-RDTs), providing interim guidance on clinical indications and target populations, assay selection, and evaluation, test interpretation and limitations, as well as on pre-analytical considerations. This document is hence mainly aimed to assist laboratory and regulated health professionals in selecting, validating, and implementing regulatory approved Ag-RDTs.


Asunto(s)
Antígenos Virales/inmunología , COVID-19/diagnóstico , Inmunoensayo/normas , Pruebas en el Punto de Atención/normas , Guías de Práctica Clínica como Asunto/normas , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Infecciones Asintomáticas/clasificación , COVID-19/inmunología , COVID-19/virología , Humanos
8.
Clin Chem Lab Med ; 58(12): 1993-2000, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33027042

RESUMEN

The diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection globally has relied extensively on molecular testing, contributing vitally to case identification, isolation, contact tracing, and rationalization of infection control measures during the coronavirus disease 2019 (COVID-19) pandemic. Clinical laboratories have thus needed to verify newly developed molecular tests and increase testing capacity at an unprecedented rate. As the COVID-19 pandemic continues to pose a global health threat, laboratories continue to encounter challenges in the selection, verification, and interpretation of these tests. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay verification, and (D) test interpretation and limitations for molecular testing of SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide and highlight the continued importance of laboratory medicine in our collective pandemic response.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Agencias Internacionales , Técnicas de Diagnóstico Molecular , Neumonía Viral/diagnóstico , Guías de Práctica Clínica como Asunto , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Humanos , Pandemias , SARS-CoV-2
9.
Clin Chem Lab Med ; 58(12): 2001-2008, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33027043

RESUMEN

Serological testing for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as an important component of the clinical management of patients with coronavirus disease 2019 (COVID-19) as well as the epidemiological assessment of SARS-CoV-2 exposure worldwide. In addition to molecular testing for the detection of SARS-CoV-2 infection, clinical laboratories have also needed to increase testing capacity to include serological evaluation of patients with suspected or known COVID-19. While regulatory approved serological immunoassays are now widely available from diagnostic manufacturers globally, there is significant debate regarding the clinical utility of these tests, as well as their clinical and analytical performance requirements prior to application. This document by the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Taskforce on COVID-19 provides interim guidance on: (A) clinical indications and target populations, (B) assay selection, (C) assay evaluation, and (D) test interpretation and limitations for serological testing of antibodies against SARS-CoV-2 infection. These evidence-based recommendations will provide practical guidance to clinical laboratories in the selection, verification, and implementation of serological assays and are of the utmost importance as we expand our pandemic response from initial case tracing and containment to mitigation strategies to minimize resurgence and further morbidity and mortality.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Agencias Internacionales , Guías de Práctica Clínica como Asunto , Pruebas Serológicas/métodos , Anticuerpos Antivirales/inmunología , Humanos , SARS-CoV-2
10.
Clin Chem Lab Med ; 58(12): 2009-2016, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33027044

RESUMEN

Routine biochemical and hematological tests have been reported to be useful in the stratification and prognostication of pediatric and adult patients with diagnosed coronavirus disease (COVID-19), correlating with poor outcomes such as the need for mechanical ventilation or intensive care, progression to multisystem organ failure, and/or death. While these tests are already well established in most clinical laboratories, there is still debate regarding their clinical value in the management of COVID-19, particularly in pediatrics, as well as the value of composite clinical risk scores in COVID-19 prognostication. This document by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on COVID-19 provides interim guidance on: (A) clinical indications for testing, (B) recommendations for test selection and interpretation, (C) considerations in test interpretation, and (D) current limitations of biochemical/hematological monitoring of COVID-19 patients. These evidence-based recommendations will provide practical guidance to clinical laboratories worldwide, underscoring the contribution of biochemical and hematological testing to our collective pandemic response.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Pruebas Hematológicas , Agencias Internacionales , Neumonía Viral/metabolismo , Guías de Práctica Clínica como Asunto , Adulto , Biomarcadores/sangre , COVID-19 , Enfermedades Cardiovasculares/complicaciones , Niño , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/complicaciones , Femenino , Humanos , Masculino , Insuficiencia Multiorgánica/complicaciones , Pandemias , Neumonía Viral/sangre , Neumonía Viral/complicaciones
12.
Anal Bioanal Chem ; 411(30): 7967-7979, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31754770

RESUMEN

Naturally occurring fructosamines are of high clinical significance due to their potential use in diabetes mellitus monitoring (quantification of fructosylated hemoglobin, HbA1c) or for the investigation of their reactivity in consecutive reactions and harmfulness towards the organism. Here we report the specific synthesis of the fructosylated dipeptide L-valyl-L-histidine (Fru-Val-His) and fructosylated L-valine (Fru-Val). Both are basic tools for the development and validation of enzymatic HbA1c assays. The two fructosamine derivatives were synthesized via a protected glucosone intermediate which was coupled to the primary amine of Val or Val-His, performing a reductive amination reaction. Overall yields starting from fructose were 36% and 34% for Fru-Val and Fru-Val-His, respectively. Both compounds were achieved in purities > 90%. A HILIC-ESI-MS/MS method was developed for routine analysis of the synthesized fructosamines, including starting materials and intermediates. The presented method provides a well-defined and efficient synthesis protocol with purification steps and characterization of the desired products. The functionality of the fructosylated dipeptide has been thoroughly tested in an enzymatic HbA1c assay, showing its concentration-dependent oxidative degradation by fructosyl-peptide oxidases (FPOX). Graphical abstract.


Asunto(s)
Diabetes Mellitus/diagnóstico , Fructosa/química , Hemoglobina Glucada/análisis , Histidina/química , Cetosas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Valina/química , Pruebas de Enzimas , Humanos
14.
Comput Struct Biotechnol J ; 21: 2100-2109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968021

RESUMEN

The spliceosome, responsible for all mature protein-coding transcripts of eukaryotic intron-containing genes, consists of small uridine-rich nuclear ribonucleoproteins (UsnRNPs). The assembly of UsnRNPs depends, on one hand, on the arginine methylation of Sm proteins catalyzed by the PRMT5 complex. On the other hand, it depends on the phosphorylation of the PRMT5 subunit pICln by the Uncoordinated Like Kinase 1 (ULK1). In consequence, phosphorylation of pICln affects the stability of the UsnRNP assembly intermediate, the so-called 6 S complex. The detailed mechanisms of phosphorylation-dependent integrity and subsequent UsnRNP assembly of the 6 S complex in vivo have not yet been analyzed. By using a phospho-specific antibody against ULK1-dependent phosphorylation sites of pICln, we visualize the intracellular distribution of phosphorylated pICln. Furthermore, we detect the colocaliphosphor-pICln1 with phospho-pICln by size-exclusion chromatography and immunofluorescence techniques. We also show that phosphorylated pICln is predominantly present in the 6 S complex. The addition of ULK1 to in vitro produced 6 S complex, as well as the reconstitution of ULK1 in ULK1-deficient cells, increases the efficiency of snRNP biogenesis. Accordingly, inhibition of ULK1 and the associated decreased pICln phosphorylation lead to accumulation of the 6 S complex and reduction in the spliceosomal activity of the cell.

15.
Biomedicines ; 11(1)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36672668

RESUMEN

Since SARS-CoV-2 emerged in December 2019 in Wuhan, the resulting pandemic has paralyzed the economic and cultural life of the world. Variants of concern (VOC) strongly increase pressure on public health systems. Rapid, easy-to-use, and cost-effective assays are essential to manage the pandemic. Here we present a bioinformatical approach for the fast and efficient design of two innovative serological Particle Enhanced Turbidimetric Immunoassays (PETIA) to quantify the SARS-CoV-2 immunoresponse. To confirm bioinformatical assumptions, an S-RBD- and a Nucleocapsid-based PETIA were produced. Sensitivity and specificity were compared for 95 patient samples using a BioMajesty™ fully automated analyzer. The S-RBD-based PETIA showed necessary specificity (98%) over the N protein-based PETIA (21%). Further, the reactivity and cross-reactivity of the RBD-based PETIA towards variant-derived antibodies of SARS-CoV-2 were assessed by a quenching inhibition test. The inhibition kinetics of the S-RBD variants Alpha, Beta, Delta, Gamma, Kappa, and Omicron were evaluated. In summary, we showed that specific and robust PETIA immunoassays can be rapidly designed and developed. The quantification of the SARS-CoV-2-related immunoresponse of variants (Alpha to Kappa) is possible using specific RBD assays. In contrast, Omicron revealed lower cross-reactivity (approx. 50%). To ensure the quantification of the Omicron variant, modified immunoassays appear to be necessary.

16.
Front Immunol ; 14: 1257265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965324

RESUMEN

Background: Quantification of the SARS-CoV-2-specific immune response by serological immunoassays is critical for the management of the COVID-19 pandemic. In particular, neutralizing antibody titers to the viral spike (S) protein have been proposed as a correlate of protection (CoP). The WHO established the First International Standard (WHO IS) for anti-SARS-CoV-2 immunoglobulin (Ig) (NIBSC 20/136) to harmonize binding assays with the same antigen specificity by assigning the same unitage in binding antibody units (BAU)/ml. Method: In this study, we analyzed the S1-specific antibody response in a cohort of healthcare workers in Germany (n = 76) during a three-dose vaccination course over 8.5 months. Subjects received either heterologous or homologous prime-boost vaccination with ChAdOx1 nCoV-19 (AstraZeneca) and BNT162b2 (Pfizer-BioNTech) or three doses of BNT162b2. Antibodies were quantified using three anti-S1 binding assays (ELISA, ECLIA, and PETIA) harmonized to the WHO IS. Serum levels of neutralizing antibodies were determined using a surrogate virus neutralization test (sVNT). Binding assays were compared using Spearman's rank correlation and Passing-Bablok regression. Findings: All assays showed good correlation and similar antibody kinetics correlating with neutralizing potential. However, the assays show large proportional differences in BAU/ml. ECLIA and PETIA, which detect total antibodies against the receptor- binding domain (RBD) within the S1 subunit, interact similarly with the convalescent plasma-derived WHO IS but differently with vaccine serum, indicating a high sensitivity to the IgG/IgM/IgA ratio. Conclusion: All three binding assays allow monitoring of the antibody response in COVID-19-vaccinated individuals. However, the assay-specific differences hinder the definition of a common protective threshold in BAU/ml. Our results highlight the need for the thoughtful use of conversion factors and consideration of method-specific differences. To improve the management of future pandemics and harmonize total antibody assays, we should strive for reference material with a well-characterized Ig isotype composition.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacuna BNT162 , SARS-CoV-2 , Epítopos , ChAdOx1 nCoV-19 , Pandemias , Sueroterapia para COVID-19 , Isotipos de Inmunoglobulinas , Anticuerpos Antivirales
17.
J Biol Chem ; 286(3): 1976-86, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21081503

RESUMEN

Protein arginine methylation plays a critical role in differential gene expression through modulating protein-protein and protein-DNA/RNA interactions. Although numerous proteins undergo arginine methylation, only limited information is available on how protein arginine methyltransferases (PRMTs) identify their substrates. The human PRMT5 complex consists of PRMT5, WD45/MEP50 (WD repeat domain 45/methylosome protein 50), and pICln and catalyzes the symmetrical arginine dimethylation of its substrate proteins. pICln recruits the spliceosomal Sm proteins to the PRMT5 complex for methylation, which allows their subsequent loading onto snRNA to form small nuclear ribonucleoproteins. To understand how the PRMT5 complex is regulated, we investigated its biochemical composition and identified RioK1 as a novel, stoichiometric component of the PRMT5 complex. We show that RioK1 and pICln bind to PRMT5 in a mutually exclusive fashion. This results in a PRMT5-WD45/MEP50 core structure that either associates with pICln or RioK1 in distinct complexes. Furthermore, we show that RioK1 functions in analogy to pICln as an adapter protein by recruiting the RNA-binding protein nucleolin to the PRMT5 complex for its symmetrical methylation. The exclusive interaction of PRMT5 with either pICln or RioK1 thus provides the first mechanistic insight into how a methyltransferase can distinguish between its substrate proteins.


Asunto(s)
Canales Iónicos/metabolismo , Complejos Multienzimáticos/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HEK293 , Células HeLa , Humanos , Canales Iónicos/genética , Metilación , Complejos Multienzimáticos/genética , Unión Proteica/fisiología , Proteína Metiltransferasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína-Arginina N-Metiltransferasas , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Especificidad por Sustrato
18.
J Cell Biol ; 179(3): 451-65, 2007 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-17984321

RESUMEN

The survival motor neuron (SMN) complex functions in maturation of uridine-rich small nuclear ribonucleoprotein (RNP) particles. SMN mediates the cytoplasmic assembly of Sm proteins onto uridine-rich small RNAs, and then participates in targeting RNPs to nuclear Cajal bodies (CBs). Recent studies have suggested that phosphorylation might control localization and function of the SMN complex. Here, we show that the nuclear phosphatase PPM1G/PP2Cgamma interacts with and dephosphorylates the SMN complex. Small interfering RNA knockdown of PPM1G leads to an altered phosphorylation pattern of SMN and Gemin3, loss of SMN from CBs, and reduced stability of SMN. Accumulation in CBs is restored upon overexpression of catalytically active, but not that of inactive, PPM1G. This demonstrates that PPM1G's phosphatase activity is necessary to maintain SMN subcellular distribution. Concomitant knockdown of unr interacting protein (unrip), a component implicated in cytoplasmic retention of the SMN complex, also rescues the localization defects. Our data suggest that an interplay between PPM1G and unrip determine compartment-specific phosphorylation patterns, localization, and function of the SMN complex.


Asunto(s)
Cuerpos Enrollados/metabolismo , Neuronas Motoras/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/enzimología , Células HeLa , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Oligonucleótidos/química , Fosforilación , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 2C , Proteínas de Unión al ARN , Empalmosomas/metabolismo
19.
Clin Chim Acta ; 529: 67-75, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167843

RESUMEN

BACKGROUND AND AIMS: Sepsis is a major concern worldwide, affecting 49 million individuals and being related to 11 million deaths. Its fast diagnosis is the key factor to guarantee a positive prognosis. Procalcitonin (PCT) has emerged as one powerful biomarker to early diagnose sepsis and for monitoring of antibiotic treatment. However, its clinical utility is jeopardized by missing standardisation. MATERIALS AND METHODS: Here we present a 1-year follow-up of the External Quality Assessment (EQA) in Germany, depicting substantial discrepancies among manufacturers and the used assay technology of current PCT measurements. A direct method comparison on two immunoassays (Abbott vs. DiaSys) on a set of 135 routine samples was used to analyse the causes of observed deviations. RESULTS: All BRAHMS-licensed manufacturers (Thermo, Roche, Abbott, Siemens, Biomérieux), the Beckman and DiaSys immunoassays as well as all assay types (fluorescence, luminescence, PETIA) reveal substantial recovery differences between each other. However, upon a non-linear re-standardization of calibrators, the two directly compared methods (Abbott, DiaSys) are well interchangeable. CONCLUSION: This work demonstrates the heterogenic situation of PCT measurements in Germany among manufacturers and all methods. By introducing dedicated correction factors, comparable results of PCT can be achieved. This work also strengthens the inevitability of calibrator traceability and higher metrological reference materials on PCT.


Asunto(s)
Polipéptido alfa Relacionado con Calcitonina , Sepsis , Biomarcadores , Humanos , Inmunoensayo/métodos , Estándares de Referencia , Sepsis/diagnóstico
20.
Front Immunol ; 13: 915338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059441

RESUMEN

Background: Since December 2019, SARS-CoV-2 has been keeping the world in suspense. Rapid tests, molecular diagnosis of acute infections, and vaccination campaigns with vaccines are building blocks of strategic pandemic control worldwide. For laboratory diagnostics, the quantification of the antibody titer of convalescents and vaccinated patients is thus increasingly coming to the fore. Methods: Here we present an evaluation on the comparability of five serological tests on a cohort of 13 patients with mild COVID-19 disease. Also participants who were vaccinated after recovery were included in this study. All common immune methods (ELISA, CLIA, PETIA) and SARS-CoV-2 specific antigens (N-, S1- and RBD-) were specifically tracked and directly compared for up to 455 days. The titer of recovered participants was also set to the degree of symptoms during infection and the occurrence of Long-COVID. In addition, relative comparability of different serological tests, all standardized to WHO, was set in reference to the neutralizing potential of the corresponding participants. Findings: The individual immune responses over 455 days after a mild SARS-CoV-2 infection remain stable, in contrast to vaccinated participants. All sero-tests reveal comparable performance and dynamics during the study and compared well to a surrogate neutralization test. Conclusion: The information presented here will help clinicians in the daily laboratory work in the selection and evaluation of different serological tests offered. The data also will support in respect of a sero-test-based neutralization cutoff.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/complicaciones , Humanos , Pandemias , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA