Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107358, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38782206

RESUMEN

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.

2.
World J Urol ; 41(4): 899-907, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35867141

RESUMEN

PURPOSE: The high incidence of upper urinary tract urothelial carcinoma (UTUC) in Taiwan is largely due to exposure to aristolochic acid (AA), a principal component of Aristolochia-based herbal medicines. Here we systematically review the molecular epidemiology, clinical presentation and biomarkers associated with AA-induced UTUC. METHODS: This is a narrative review. Medline, Embase, and Web of Science were searched from inception to December 31, 2021. Studies evaluating the association, detection, and clinical characteristics of AA and UTUC were included. RESULTS: A nationwide database revealed 39% of the Taiwanese population had been exposed to AA-containing herbs between 1997 and 2003. Epidemiological reports revealed AA posed a significantly higher hazard for renal failure and UTUC in herbalists and the general population who ingested AA-containing herbs. The presence of aristolactam-DNA adducts and a distinctive signature mutation, A:T to T:A transversions, located predominantly on the non-transcribed DNA strand, with a strong preference for deoxyadenosine in a consensus sequence (CAG), was observed in many UTUC patients. Clinically, AA-related UTUC patients were characterized by a younger age, female gender, impaired renal function and recurrence of contralateral UTUC. To date, there are no preventive measures, except prophylactic nephrectomy, for subjects at risk of AA nephropathy or AA-related UTUC. CONCLUSION: AA exposure via Aristolochia-based herbal medicines is a problem throughout Taiwan, resulting in a high incidence of UTUC. Aristolactam-DNA adducts and a distinctive signature mutation, A:T to T:A transversions, can be used as biomarkers to identify AA-related UTUC. AA-related UTUC is associated with a high recurrence rate of contralateral UTUC.


Asunto(s)
Ácidos Aristolóquicos , Carcinoma de Células Transicionales , Medicamentos Herbarios Chinos , Neoplasias Renales , Neoplasias Ureterales , Neoplasias de la Vejiga Urinaria , Sistema Urinario , Humanos , Femenino , Carcinoma de Células Transicionales/inducido químicamente , Carcinoma de Células Transicionales/epidemiología , Carcinoma de Células Transicionales/genética , Aductos de ADN/efectos adversos , Medicamentos Herbarios Chinos/efectos adversos , Taiwán/epidemiología , Carcinógenos , Neoplasias Renales/inducido químicamente , Neoplasias Renales/epidemiología , Neoplasias Renales/genética , Ácidos Aristolóquicos/efectos adversos , Ácidos Aristolóquicos/análisis , Neoplasias Ureterales/inducido químicamente , Neoplasias Ureterales/epidemiología
3.
Int J Cancer ; 150(2): 374-386, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34569060

RESUMEN

Recurrent upper tract urothelial carcinomas (UTUCs) arise in the context of nephropathy linked to exposure to the herbal carcinogen aristolochic acid (AA). Here we delineated the molecular programs underlying UTUC tumorigenesis in patients from endemic aristolochic acid nephropathy (AAN) regions in Southern Europe. We applied an integrative multiomics analysis of UTUCs, corresponding unaffected tissues and of patient urines. Quantitative microRNA (miRNA) and messenger ribonucleic acid (mRNA) expression profiling, immunohistochemical analysis by tissue microarrays and exome and transcriptome sequencing were performed in UTUC and nontumor tissues. Urinary miRNAs of cases undergoing surgery were profiled before and after tumor resection. Ribonucleic acid (RNA) and protein levels were analyzed using appropriate statistical tests and trend assessment. Dedicated bioinformatic tools were used for analysis of pathways, mutational signatures and result visualization. The results delineate UTUC-specific miRNA:mRNA networks comprising 89 miRNAs associated with 1,862 target mRNAs, involving deregulation of cell cycle, deoxyribonucleic acid (DNA) damage response, DNA repair, bladder cancer, oncogenes, tumor suppressors, chromatin structure regulators and developmental signaling pathways. Key UTUC-specific transcripts were confirmed at the protein level. Exome and transcriptome sequencing of UTUCs revealed AA-specific mutational signature SBS22, with 68% to 76% AA-specific, deleterious mutations propagated at the transcript level, a possible basis for neoantigen formation and immunotherapy targeting. We next identified a signature of UTUC-specific miRNAs consistently more abundant in the patients' urine prior to tumor resection, thereby defining biomarkers of tumor presence. The complex gene regulation programs of AAN-associated UTUC tumors involve regulatory miRNAs prospectively applicable to noninvasive urine-based screening of AAN patients for cancer presence and recurrence.


Asunto(s)
Ácidos Aristolóquicos/efectos adversos , Biomarcadores de Tumor/genética , Carcinoma de Células Transicionales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/orina , Mutación , Neoplasias de la Vejiga Urinaria/patología , Biomarcadores de Tumor/orina , Carcinoma de Células Transicionales/inducido químicamente , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/orina , Exoma , Estudios de Seguimiento , Humanos , Pronóstico , Proteoma/análisis , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/orina
4.
EMBO Rep ; 21(11): e51376, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33107689

RESUMEN

China and the WHO's promotion of herbal and traditional medicines, most of which were not tested for safety and efficacy, have raised public health concerns.


Asunto(s)
Salud Global , Salud Pública , China , Medicina Tradicional , Organización Mundial de la Salud
5.
Curr Opin Urol ; 30(5): 689-695, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32701724

RESUMEN

PURPOSE OF REVIEW: To acquaint urologists with aristolochic acid nephropathy, an iatrogenic disease that poses a distinct threat to global public health. In China alone, 100 million people may currently be at risk. We illustrate the power of molecular epidemiology in establishing the cause of this disease. RECENT FINDINGS: Molecular epidemiologic approaches and novel mechanistic information established a causative linkage between exposure to aristolochic acid and urothelial carcinomas of the bladder and upper urinary tract. Noninvasive tests are available that detect urothelial cancers through the genetic analysis of urinary DNA. Combined with cytology, some of these tests can detect 95% of patients at risk of developing bladder and/or upper urothelial tract cancer. Robust biomarkers, including DNA-adduct and mutational signature analysis, unequivocally identify aristolochic acid-induced tumours. The high mutational load associated with aristolochic acid-induced tumours renders them candidates for immune-checkpoint therapy. SUMMARY: Guided by recent developments that facilitate early detection of urothelial cancers, the morbidity and mortality associated with aristolochic acid-induced bladder and upper tract urothelial carcinomas may be substantially reduced. The molecular epidemiology tools that define aristolochic acid-induced tumours may be applicable to other studies assessing potential environmental carcinogens.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Nefropatía de los Balcanes/inducido químicamente , Aductos de ADN/metabolismo , Medicamentos Herbarios Chinos/efectos adversos , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias Urológicas/inducido químicamente , Carcinógenos , Aductos de ADN/genética , Humanos
6.
Yale J Biol Med ; 93(2): 355-363, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32607094

RESUMEN

Aristolochia herbals have a 2500-year history of medicinal use. We focused this article on Portland's Powders, an 18th-century British gout medicine containing Aristolochia herbs. The powders constitute an 18th-century iteration of an herbal remedy, which was used, with variations, since at least the fifth century BCE. The use of Portland's Powders in Great Britain may appear to be an unusual choice for investigating a public health problem currently widespread in Asia. Yet it exemplifies long-term medicinal use of Aristolochia herbs, reflecting our argument that aristolochic acid nephropathy (AAN) is a historically persistent iatrogenic disease. Moreover, we provide compelling evidence that individuals taking Portland's Powders for gout would have ingested toxic quantities of aristolochic acid, which causes AAN and cancer. Several factors, including long history of use, latency of toxic effects, and lack of effective regulation, perpetuate usage of Aristolochia herbals to the present day.


Asunto(s)
Aristolochia/química , Ácidos Aristolóquicos/farmacología , Enfermedades Renales , Efectos Adversos a Largo Plazo , Fitoterapia , Carcinógenos/farmacología , Gota/tratamiento farmacológico , Supresores de la Gota/farmacología , Historia , Humanos , Enfermedad Iatrogénica/prevención & control , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Efectos Adversos a Largo Plazo/inducido químicamente , Efectos Adversos a Largo Plazo/fisiopatología , Efectos Adversos a Largo Plazo/prevención & control , Fitoterapia/efectos adversos , Fitoterapia/métodos
7.
Proc Natl Acad Sci U S A ; 113(35): 9846-51, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528664

RESUMEN

We present the bottleneck sequencing system (BotSeqS), a next-generation sequencing method that simultaneously quantifies rare somatic point mutations across the mitochondrial and nuclear genomes. BotSeqS combines molecular barcoding with a simple dilution step immediately before library amplification. We use BotSeqS to show age- and tissue-dependent accumulations of rare mutations and demonstrate that somatic mutational burden in normal human tissues can vary by several orders of magnitude, depending on biologic and environmental factors. We further show major differences between the mutational patterns of the mitochondrial and nuclear genomes in normal tissues. Lastly, the mutation spectra of normal tissues were different from each other, but similar to those of the cancers that arose in them. This technology can provide insights into the number and nature of genetic alterations in normal tissues and can be used to address a variety of fundamental questions about the genomes of diseased tissues.


Asunto(s)
Genoma Humano/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Núcleo Celular/genética , Niño , Preescolar , ADN Mitocondrial/química , ADN Mitocondrial/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Chem Res Toxicol ; 30(12): 2130-2139, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29120619

RESUMEN

Formalin-fixed paraffin-embedded (FFPE) tissues are rarely used for screening DNA adducts of carcinogens because the harsh conditions required to reverse the formaldehyde-mediated DNA cross-links can destroy DNA adducts. We recently adapted a commercial silica-based column kit used in genomics to manually isolate DNA under mild conditions from FFPE tissues of rodents and humans and successfully measured DNA adducts of several carcinogens including aristolochic acid I (AA-I), 4-aminobiphenyl (4-ABP), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (Yun et al. (2013) Anal. Chem. 85, 4251-8, and Guo et al. (2016) Anal. Chem. 88, 4780-7). The DNA retrieval methodology is robust; however, the procedure is time-consuming and labor intensive, and not amenable to rapid throughput processing. In this study, we have employed the Promega Maxwell 16 MDx system, which is commonly used in large scale genomics studies, for the rapid throughput extraction of DNA. This system streamlines the DNA isolation procedure and increases the sample processing rate by about 8-fold over the manual method (32 samples versus 4 samples processed per hour). High purity DNA is obtained in satisfactory yield for the measurements of DNA adducts by ultra performance liquid chromatography-electrospray-ionization-ion trap-multistage scan mass spectrometry. The measurements show that the levels of DNA adducts of AA-I, 4-ABP, and PhIP in FFPE rodent and human tissues are comparable to those levels measured in DNA from matching tissues isolated by the commercial silica-based column kits and in DNA from fresh frozen tissues isolated by the conventional phenol-chloroform extraction method. The isolation of DNA from tissues is one major bottleneck in the analysis of DNA adducts. This rapid throughput methodology greatly decreases the time required to process DNA and can be employed in large-scale epidemiology studies designed to assess the role of chemical exposures and DNA adducts in cancer risk.


Asunto(s)
Carcinógenos/análisis , Aductos de ADN/análisis , ADN/aislamiento & purificación , Formaldehído/química , Adhesión en Parafina , Fijación del Tejido , Animales , Cloroformo/química , Cromatografía Líquida de Alta Presión , ADN/genética , Aductos de ADN/genética , Humanos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos , Fenoles/química , Próstata/patología , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
9.
World J Urol ; 35(3): 379-387, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27604375

RESUMEN

PURPOSE: Upper-tract urothelial carcinoma (UTUC) is a relatively uncommon disease with limited available evidence on specific topics. The purpose of this article was to review the previous literature to summarize the current knowledge about UTUC epidemiology, diagnosis, preoperative evaluation and prognostic assessment. METHODS: Using MEDLINE, a non-systematic review was performed including articles between January 2000 and February 2016. English language original articles, reviews and editorials were selected based on their clinical relevance. RESULTS: UTUC accounts for 5-10 % of all urothelial cancers, with an increasing incidence. UTUC and bladder cancer share some common risk factors, even if they are two different entities regarding practical, biological and clinical characteristics. Aristolochic acid plays an important role in UTUC pathogenesis in certain regions. It is further estimated that approximately 10 % of UTUC are part of the hereditary non-polyposis colorectal cancer spectrum disease. UTUC diagnosis remains mainly based on imaging and endoscopy, but development of new technologies is rapidly changing the diagnosis algorithm. To help the decision-making process regarding surgical treatment, extent of lymphadenectomy and selection of neoadjuvant systemic therapies, predictive tools based on preoperative patient and tumor characteristics have been developed. CONCLUSIONS: Awareness regarding epidemiology, diagnosis, preoperative evaluation and prognostic assessment changes is essential to correctly diagnose and manage UTUC patients, thereby potentially improving their outcomes.


Asunto(s)
Carcinoma de Células Transicionales/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Neoplasias Renales/epidemiología , Neoplasias Ureterales/epidemiología , Neoplasias de la Vejiga Urinaria/epidemiología , Ácidos Aristolóquicos/metabolismo , Carcinoma de Células Transicionales/diagnóstico por imagen , Carcinoma de Células Transicionales/patología , Carcinoma de Células Transicionales/cirugía , Humanos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Pelvis Renal/diagnóstico por imagen , Pelvis Renal/patología , Pelvis Renal/cirugía , Escisión del Ganglio Linfático , Terapia Neoadyuvante , Cuidados Preoperatorios , Pronóstico , Factores de Riesgo , Neoplasias Ureterales/diagnóstico por imagen , Neoplasias Ureterales/patología , Neoplasias Ureterales/cirugía , Ureteroscopía
10.
Nucleic Acids Res ; 43(1): 272-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25520195

RESUMEN

Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.


Asunto(s)
Daño del ADN , ADN-Formamidopirimidina Glicosilasa/química , Emparejamiento Base , ADN/química , ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-Formamidopirimidina Glicosilasa/genética , ADN-Formamidopirimidina Glicosilasa/metabolismo , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Modelos Moleculares , Mutación
11.
Carcinogenesis ; 37(7): 647-655, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27207664

RESUMEN

Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Arilsulfotransferasa/genética , Complejos Multienzimáticos/genética , Sulfato Adenililtransferasa/genética , Arilsulfotransferasa/antagonistas & inhibidores , Arilsulfotransferasa/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidad , ADN/genética , ADN/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Riñón/metabolismo , Riñón/patología , Complejos Multienzimáticos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Pentaclorofenol/farmacología , ARN Interferente Pequeño , Sulfato Adenililtransferasa/metabolismo , Xantina Deshidrogenasa/metabolismo
12.
Anal Chem ; 88(9): 4780-7, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27043225

RESUMEN

DNA adducts are a measure of internal exposure to genotoxicants and an important biomarker for human risk assessment. However, the employment of DNA adducts as biomarkers in human studies is often restricted because fresh-frozen tissues are not available. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis are readily accessible. Recently, our laboratory reported that DNA adducts of aristolochic acid, a carcinogenic component of Aristolochia herbs used in traditional Chinese medicines worldwide, can be recovered quantitatively from FFPE tissues. In this study, we have evaluated the efficacy of our method for retrieval of DNA adducts from archived tissue by measuring DNA adducts derived from four other classes of human carcinogens: polycyclic aromatic hydrocarbons (PAHs), aromatic amines, heterocyclic aromatic amines (HAAs), and N-nitroso compounds (NOCs). Deoxyguanosine (dG) adducts of the PAH benzo[a]pyrene (B[a]P), 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N(2)-B[a]PDE); the aromatic amine 4-aminobiphenyl (4-ABP), N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP); the HAA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP); and the dG adducts of the NOC 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), O(6)-methyl-dG (O(6)-Me-dG) and O(6)-pyridyloxobutyl-dG (O(6)-POB-dG), formed in liver, lung, bladder, pancreas, or colon were recovered in comparable yields from fresh-frozen and FFPE preserved tissues of rodents treated with the procarcinogens. Quantification was achieved by ultraperformance liquid chromatography coupled with electrospray ionization ion-trap multistage mass spectrometry (UPLC/ESI-IT-MS(3)). These advancements in the technology of DNA adduct retrieval from FFPE tissue clear the way for use of archived pathology samples in molecular epidemiology studies designed to assess the causal role of exposure to hazardous chemicals with cancer risk.


Asunto(s)
Ácidos Aristolóquicos/análisis , Carcinógenos/análisis , Aductos de ADN/análisis , Formaldehído/química , Animales , Aristolochia/química , Cromatografía Líquida de Alta Presión , Colon/química , Femenino , Hígado/química , Pulmón/química , Masculino , Ratones , Estructura Molecular , Páncreas/química , Adhesión en Parafina , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Vejiga Urinaria/química
13.
Proc Natl Acad Sci U S A ; 110(15): 6021-6, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530248

RESUMEN

Malignant cells, like all actively growing cells, must maintain their telomeres, but genetic mechanisms responsible for telomere maintenance in tumors have only recently been discovered. In particular, mutations of the telomere binding proteins alpha thalassemia/mental retardation syndrome X-linked (ATRX) or death-domain associated protein (DAXX) have been shown to underlie a telomere maintenance mechanism not involving telomerase (alternative lengthening of telomeres), and point mutations in the promoter of the telomerase reverse transcriptase (TERT) gene increase telomerase expression and have been shown to occur in melanomas and a small number of other tumors. To further define the tumor types in which this latter mechanism plays a role, we surveyed 1,230 tumors of 60 different types. We found that tumors could be divided into types with low (<15%) and high (≥15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker that may be useful for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Mutación , Telomerasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Glioma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Telómero/ultraestructura , Adulto Joven
14.
Biopolymers ; 103(9): 491-508, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25991500

RESUMEN

The magnitude and nature of lesion-induced energetic perturbations empirically correlate with mutagenicity/cytotoxicity profiles and can be predictive of lesion outcomes during polymerase-mediated replication in vitro. In this study, we assess the sequence and counterbase-dependent energetic impact of the Thymine glycol (Tg) lesion on a family of deoxyoligonucleotide duplexes. Tg damage arises from thymine and methyl-cytosine exposure to oxidizing agents or radiation-generated free-radicals. The Tg lesion blocks polymerase-mediated DNA replication in vitro and the unrepaired site elicits cytotoxic lethal consequences in vivo. Our combined calorimetric and spectroscopic characterization correlates Tg -induced energetic perturbations with biological and structural properties. Specifically, we incorporate a 5R-Tg isomer centered within the tridecanucleotide sequence 5'-GCGTACXCATGCG-3' (X = Tg or T) which is hybridized with the corresponding complementary sequence 5'-CGCATGNGTACGC-3' (N = A, G, T, C) to generate families of Tg -damaged (Tg ·N) and lesion-free (T·N) duplexes. We demonstrate that the magnitude and nature of the Tg destabilizing impact is dependent on counterbase identity (i.e., A ∼ G < T < C). The observation that a Tg lesion is less destabilizing when positioned opposite purines suggests that favorable counterbase stacking interactions may partially compensate lesion-induced perturbations. Moreover, the destabilizing energies of Tg ·N duplexes parallel their respective lesion-free T·N mismatch counterparts (i.e., G < T < C). Elucidation of Tg-induced destabilization relative to the corresponding undamaged mismatch energetics allows resolution of lesion-specific and sequence-dependent impacts. The Tg-induced energetic perturbations are consistent with its replication blocking properties and may serve as differential recognition elements for discrimination by the cellular repair machinery.


Asunto(s)
ADN/química , Timina/análogos & derivados , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Daño del ADN/genética , Conformación de Ácido Nucleico , Termodinámica , Timina/química
15.
Arch Toxicol ; 89(1): 47-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24792323

RESUMEN

Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Aristolóquicos/toxicidad , Daño del ADN , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología
16.
Proc Natl Acad Sci U S A ; 109(21): 8241-6, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22493262

RESUMEN

Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of (5')AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health.


Asunto(s)
Ácidos Aristolóquicos/efectos adversos , Carcinoma de Células Renales/inducido químicamente , Carcinoma de Células Transicionales/inducido químicamente , Medicamentos Herbarios Chinos/efectos adversos , Neoplasias Renales/inducido químicamente , Neoplasias Ureterales/inducido químicamente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/epidemiología , Carcinoma de Células Renales/genética , Carcinoma de Células Transicionales/epidemiología , Carcinoma de Células Transicionales/genética , Aductos de ADN/genética , Femenino , Humanos , Neoplasias Renales/epidemiología , Neoplasias Renales/genética , Masculino , Persona de Mediana Edad , Mutágenos/efectos adversos , Oncogenes/efectos de los fármacos , Oncogenes/genética , Taiwán/epidemiología , Proteína p53 Supresora de Tumor/genética , Neoplasias Ureterales/epidemiología , Neoplasias Ureterales/genética , Urotelio/efectos de los fármacos , Urotelio/patología
17.
Carcinogenesis ; 35(8): 1814-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24743514

RESUMEN

Aristolochic acids are potent human carcinogens; the role of phase II metabolism in their bioactivation is unclear. Accordingly, we tested the ability of the partially reduced metabolites, N-hydroxyaristolactams (AL-NOHs), and their N-O-sulfonated and N-O-acetylated derivatives to react with DNA to form aristolactam-DNA adducts. AL-NOHs displayed little or no activity in this regard while the sulfo- and acetyl compounds readily form DNA adducts, as detected by (32)P-post-labeling analysis. Mouse hepatic and renal cytosols stimulated binding of AL-NOHs to DNA in the presence of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) but not of acetyl-CoA. Using Time of Flight liquid chromatography/mass spectrometry, N-hydroxyaristolactam I formed the sulfated compound in the presence of PAPS and certain human sulfotransferases, SULT1B1 >>> SULT1A2 > SULT1A1 >>> SULT1A3. The same pattern of SULT reactivity was observed when N-hydroxyaristolactam I was incubated with these enzymes and PAPS and the reaction was monitored by formation of aristolactam-DNA adducts. In the presence of human NAD(P)H: quinone oxidoreductase, the ability of aristolochic acid I to bind DNA covalently was increased significantly by addition of PAPS and SULT1B1. We conclude from these studies that AL-NOHs, formed following partial nitroreduction of aristolochic acids, serve as substrates for SULT1B1, producing N-sulfated esters, which, in turn, are converted to highly active species that react with DNA and, potentially, cellular proteins, resulting in the genotoxicity and nephrotoxicity associated with ingestion of aristolochic acids by humans.


Asunto(s)
Ácidos Aristolóquicos/farmacología , Carcinógenos/farmacología , Aductos de ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Animales , Arilsulfotransferasa/metabolismo , Western Blotting , Proliferación Celular , Células Cultivadas , Citosol/metabolismo , Aductos de ADN/metabolismo , Etanolaminas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Modelos Moleculares , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidorreductasas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácidos Esteáricos , Sulfotransferasas/metabolismo
18.
Carcinogenesis ; 35(9): 2055-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24776219

RESUMEN

DNA adducts are a measure of internal exposure to genotoxicants. However, the measurement of DNA adducts in molecular epidemiology studies often is precluded by the lack of fresh tissue. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues frequently are accessible, although technical challenges remain in retrieval of high quality DNA suitable for biomonitoring of adducts. Aristolochic acids (AA) are human carcinogens found in Aristolochia plants, some of which have been used in the preparation of traditional Chinese herbal medicines. We previously established a method to measure DNA adducts of AA in FFPE tissue. In this study, we examine additional features of formalin fixation that could impact the quantity and quality of DNA and report on the recovery of AA-DNA adducts in mice exposed to AA. The yield of DNA isolated from tissues fixed with formalin decreased over 1 week; however, the levels of AA-DNA adducts were similar to those in fresh frozen tissue. Moreover, DNA from FFPE tissue served as a template for PCR amplification, yielding sequence data of comparable quality to DNA obtained from fresh frozen tissue. The estimates of AA-DNA adducts measured in freshly frozen tissue and matching FFPE tissue blocks of human kidney stored for 9 years showed good concordance. Thus, DNA isolated from FFPE tissues may be used to biomonitor DNA adducts and to amplify genes used for mutational analysis, providing clues regarding the origin of human cancers for which an environmental cause is suspected.


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Carcinógenos/metabolismo , Aductos de ADN/genética , Animales , Aductos de ADN/aislamiento & purificación , Aductos de ADN/metabolismo , Análisis Mutacional de ADN/normas , Fijadores/química , Formaldehído/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Adhesión en Parafina , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray/normas , Fijación del Tejido
19.
Nephrol Dial Transplant ; 29(11): 2020-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24166461

RESUMEN

Currently used diagnostic criteria in different endemic (Balkan) nephropathy (EN) centers involve different combinations of parameters, various cut-off values and many of them are not in agreement with proposed international guidelines. Leaders of EN centers began to address these problems at scientific meetings, and this paper is the outgrowth of those discussions. The main aim is to provide recommendations for clinical work on current knowledge and expertise. This document is developed for use by general physicians, nephrologists, urologist, public health experts and epidemiologist, and it is hoped that it will be adopted by responsible institutions in countries harboring EN. National medical providers should cover costs of screening and diagnostic procedures and treatment of EN patients with or without upper urothelial cancers.


Asunto(s)
Nefropatía de los Balcanes , Consenso , Manejo de la Enfermedad , Tamizaje Masivo/métodos , Nefropatía de los Balcanes/clasificación , Nefropatía de los Balcanes/diagnóstico , Nefropatía de los Balcanes/terapia , Humanos
20.
Nucleic Acids Res ; 40(6): 2494-505, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121226

RESUMEN

Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues.


Asunto(s)
Adenina/análogos & derivados , Ácidos Aristolóquicos/toxicidad , Aductos de ADN/metabolismo , Reparación del ADN , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Mutagénesis , Mutágenos/toxicidad , Adenina/química , Adenina/metabolismo , Ácidos Aristolóquicos/química , Línea Celular , Aductos de ADN/química , Proteínas de Unión al ADN/metabolismo , Desoxiadenosinas , Genoma Humano , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Mutágenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA