Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 440(7081): 164, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16525462

RESUMEN

Long gamma-ray bursts (GRBs) are bright flashes of high-energy photons that can last for tens of minutes; they are generally associated with galaxies that have a high rate of star formation and probably arise from the collapsing cores of massive stars, which produce highly relativistic jets (collapsar model). Here we describe gamma- and X-ray observations of the most distant GRB ever observed (GRB 050904): its redshift (z) of 6.29 means that this explosion happened 12.8 billion years ago, corresponding to a time when the Universe was just 890 million years old, close to the reionization era. This means that not only did stars form in this short period of time after the Big Bang, but also that enough time had elapsed for them to evolve and collapse into black holes.

2.
Nature ; 437(7060): 851-4, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16208363

RESUMEN

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

3.
Science ; 358(6370): 1565-1570, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29038371

RESUMEN

With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA