Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(24): 4574-4586.e16, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36423580

RESUMEN

CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Animales , Humanos , Microscopía por Crioelectrón , Edición Génica , Genoma , Bacteriófagos/genética , ADN , ARN , Mamíferos/genética
2.
Plant J ; 92(2): 244-262, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28752516

RESUMEN

CYCLING DOF FACTOR 1 (CDF1) and its homologs play an important role in the floral transition by repressing the expression of floral activator genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) in Arabidopsis. The day-length-specific removal of CDF1-dependent repression is a critical mechanism in photoperiodic flowering. However, the mechanism by which CDF1 represses CO and FT transcription remained elusive. Here we demonstrate that Arabidopsis CDF proteins contain non-EAR motif-like conserved domains required for interaction with the TOPLESS (TPL) co-repressor protein. This TPL interaction confers a repressive function on CDF1, as mutations of the N-terminal TPL binding domain largely impair the ability of CDF1 protein to repress its targets. TPL proteins are present on specific regions of the CO and FT promoters where CDF1 binds during the morning. In addition, TPL binding increases when CDF1 expression is elevated, suggesting that TPL is recruited to these promoters in a time-dependent fashion by CDFs. Moreover, reduction of TPL activity induced by expressing a dominant negative version of TPL (tpl-1) in phloem companion cells results in early flowering and a decreased sensitivity to photoperiod in a manner similar to a cdf loss-of-function mutant. Our results indicate that the mechanism of CDF1 repression is through the formation of a CDF-TPL transcriptional complex, which reduces the expression levels of CO and FT during the morning for seasonal flowering.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Proteínas Represoras/fisiología , Proteínas Co-Represoras/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA