Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985561

RESUMEN

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Marchantia/genética , Adaptación Biológica , Embryophyta/fisiología , Regulación de la Expresión Génica de las Plantas , Marchantia/fisiología , Anotación de Secuencia Molecular , Transducción de Señal , Transcripción Genética
2.
Cell ; 145(5): 707-19, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21620136

RESUMEN

Defining the contributions and interactions of paternal and maternal genomes during embryo development is critical to understand the fundamental processes involved in hybrid vigor, hybrid sterility, and reproductive isolation. To determine the parental contributions and their regulation during Arabidopsis embryogenesis, we combined deep-sequencing-based RNA profiling and genetic analyses. At the 2-4 cell stage there is a strong, genome-wide dominance of maternal transcripts, although transcripts are contributed by both parental genomes. At the globular stage the relative paternal contribution is higher, largely due to a gradual activation of the paternal genome. We identified two antagonistic maternal pathways that control these parental contributions. Paternal alleles are initially downregulated by the chromatin siRNA pathway, linked to DNA and histone methylation, whereas transcriptional activation requires maternal activity of the histone chaperone complex CAF1. Our results define maternal epigenetic pathways controlling the parental contributions in plant embryos, which are distinct from those regulating genomic imprinting.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , N-Metiltransferasa de Histona-Lisina/metabolismo , Óvulo Vegetal/metabolismo , Factores de Empalme de ARN , ARN Interferente Pequeño/metabolismo , Semillas/genética , Activación Transcripcional
3.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36178124

RESUMEN

Plant cells are surrounded by a cell wall, a rigid structure that is not only important for cell and organ shape, but is also crucial for intercellular communication and interactions with the environment. In the flowering plant Arabidopsis thaliana, the 17 members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase family are involved in a multitude of physiological and developmental processes, making it difficult to assess their primary or ancestral function. To reduce genetic complexity, we characterized the single CrRLK1L gene of Marchantia polymorpha, MpFERONIA (MpFER). Plants with reduced MpFER levels show defects in vegetative development, i.e. rhizoid formation and cell expansion, and have reduced male fertility. In contrast, cell integrity and morphogenesis of the gametophyte are severely affected in Mpfer null mutants and MpFER overexpression lines. Thus, we conclude that the CrRLK1L gene family originated from a single gene with an ancestral function in cell expansion and the maintenance of cellular integrity. During land plant evolution, this ancestral gene diversified to fulfill a multitude of specialized physiological and developmental roles in the formation of both gametophytic and sporophytic structures essential to the life cycle of flowering plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060625

RESUMEN

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Arabidopsis/fisiología , Factores de Transcripción/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Histona Desacetilasas/metabolismo
5.
PLoS Biol ; 20(11): e3001842, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36445870

RESUMEN

Historic yield advances in the major crops have, to a large extent, been achieved by selection for improved productivity of groups of plant individuals such as high-density stands. Research suggests that such improved group productivity depends on "cooperative" traits (e.g., erect leaves, short stems) that-while beneficial to the group-decrease individual fitness under competition. This poses a problem for some traditional breeding approaches, especially when selection occurs at the level of individuals, because "selfish" traits will be selected for and reduce yield in high-density monocultures. One approach, therefore, has been to select individuals based on ideotypes with traits expected to promote group productivity. However, this approach is limited to architectural and physiological traits whose effects on growth and competition are relatively easy to anticipate. Here, we developed a general and simple method for the discovery of alleles promoting cooperation in plant stands. Our method is based on the game-theoretical premise that alleles increasing cooperation benefit the monoculture group but are disadvantageous to the individual when facing noncooperative neighbors. Testing the approach using the model plant Arabidopsis thaliana, we found a major effect locus where the rarer allele was associated with increased cooperation and productivity in high-density stands. The allele likely affects a pleiotropic gene, since we find that it is also associated with reduced root competition but higher resistance against disease. Thus, even though cooperation is considered evolutionarily unstable except under special circumstances, conflicting selective forces acting on a pleiotropic gene might maintain latent genetic variation for cooperation in nature. Such variation, once identified in a crop, could rapidly be leveraged in modern breeding programs and provide efficient routes to increase yields.


Asunto(s)
Arabidopsis , Fitomejoramiento , Humanos , Productos Agrícolas , Fenotipo , Alelos , Arabidopsis/genética , Variación Genética
6.
New Phytol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853408

RESUMEN

Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome. We combined a genotyping-by-sequencing (GBS) approach with a genome-wide association study (GWAS) to identify candidate genes, and assessed their functional role in the observed morphological changes by studying mutations of orthologous genes in the model plant Arabidopsis thaliana. We found 31 candidate genes involved in a wide range of functions from DNA/RNA binding to transport. Our functional assessment of orthologous genes in A. thaliana revealed that two of the identified genes in B. rapa are involved in regulating the size of floral organs. We found a protein kinase superfamily protein involved in petal width, an important trait in plant attractiveness to pollinators. Moreover, we found a histone lysine methyltransferase (HKMT) associated with stamen length. Altogether, our study shows that hoverfly pollination leads to rapid evolution toward the selfing syndrome mediated by polygenic changes.

7.
PLoS Biol ; 18(7): e3000740, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32649659

RESUMEN

The carnivorous Venus flytrap catches prey by an ingenious snapping mechanism. Based on work over nearly 200 years, it has become generally accepted that two touches of the trap's sensory hairs within 30 s, each one generating an action potential, are required to trigger closure of the trap. We developed an electromechanical model, which, however, suggests that under certain circumstances one touch is sufficient to generate two action potentials. Using a force-sensing microrobotic system, we precisely quantified the sensory-hair deflection parameters necessary to trigger trap closure and correlated them with the elicited action potentials in vivo. Our results confirm the model's predictions, suggesting that the Venus flytrap may be adapted to a wider range of prey movements than previously assumed.


Asunto(s)
Droseraceae/fisiología , Percepción del Tacto/fisiología , Potenciales de Acción/fisiología , Fenómenos Biomecánicos , Electricidad , Modelos Biológicos , Estimulación Física , Torque
8.
PLoS Comput Biol ; 18(4): e1009242, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377870

RESUMEN

Ratiometric time-lapse FRET analysis requires a robust and accurate processing pipeline to eliminate bias in intensity measurements on fluorescent images before further quantitative analysis can be conducted. This level of robustness can only be achieved by supplementing automated tools with built-in flexibility for manual ad-hoc adjustments. FRET-IBRA is a modular and fully parallelized configuration file-based tool written in Python. It simplifies the FRET processing pipeline to achieve accurate, registered, and unified ratio image stacks. The flexibility of this tool to handle discontinuous image frame sequences with tailored configuration parameters further streamlines the processing of outliers and time-varying effects in the original microscopy images. FRET-IBRA offers cluster-based channel background subtraction, photobleaching correction, and ratio image construction in an all-in-one solution without the need for multiple applications, image format conversions, and/or plug-ins. The package accepts a variety of input formats and outputs TIFF image stacks along with performance measures to detect both the quality and failure of the background subtraction algorithm on a per frame basis. Furthermore, FRET-IBRA outputs images with superior signal-to-noise ratio and accuracy in comparison to existing background subtraction solutions, whilst maintaining a fast runtime. We have used the FRET-IBRA package extensively to quantify the spatial distribution of calcium ions during pollen tube growth under mechanical constraints. Benchmarks against existing tools clearly demonstrate the need for FRET-IBRA in extracting reliable insights from FRET microscopy images of dynamic physiological processes at high spatial and temporal resolution. The source code for Linux and Mac operating systems is released under the BSD license and, along with installation instructions, test images, example configuration files, and a step-by-step tutorial, is freely available at github.com/gmunglani/fret-ibra.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Programas Informáticos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía , Relación Señal-Ruido
9.
Proc Natl Acad Sci U S A ; 117(13): 7494-7503, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32165538

RESUMEN

Plant reproduction relies on the highly regulated growth of the pollen tube for sperm delivery. This process is controlled by secreted RALF signaling peptides, which have previously been shown to be perceived by Catharanthus roseus RLK1-like (CrRLK1Ls) membrane receptor-kinases/LORELEI-like GLYCOLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEINS (LLG) complexes, or by leucine-rich repeat (LRR) extensin proteins (LRXs). Here, we demonstrate that RALF peptides fold into bioactive, disulfide bond-stabilized proteins that bind the LRR domain of LRX proteins with low nanomolar affinity. Crystal structures of LRX2-RALF4 and LRX8-RALF4 complexes at 3.2- and 3.9-Å resolution, respectively, reveal a dimeric arrangement of LRX proteins, with each monomer binding one folded RALF peptide. Structure-based mutations targeting the LRX-RALF4 complex interface, or the RALF4 fold, reduce RALF4 binding to LRX8 in vitro and RALF4 function in growing pollen tubes. Mutants targeting the disulfide-bond stabilized LRX dimer interface fail to rescue lrx infertility phenotypes. Quantitative biochemical assays reveal that RALF4 binds LLGs and LRX cell-wall modules with drastically different binding affinities, and with distinct and mutually exclusive binding modes. Our biochemical, structural, and genetic analyses reveal a complex signaling network by which RALF ligands instruct different signaling proteins using distinct targeting mechanisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/metabolismo , Tubo Polínico/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Genes de Plantas , Proteínas Repetidas Ricas en Leucina , Ligandos , Glicoproteínas de Membrana/metabolismo , Mutación , Péptidos/metabolismo , Fenotipo , Fosfotransferasas/metabolismo , Tubo Polínico/metabolismo , Polinización , Proteínas/metabolismo
10.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569809

RESUMEN

Ferns and lycophytes have received scant molecular attention in comparison to angiosperms. The advent of high-throughput technologies allowed an advance towards a greater knowledge of their elusive genomes. In this work, proteomic analyses of heart-shaped gametophytes of two ferns were performed: the apomictic Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. In total, a set of 218 proteins shared by these two gametophytes were analyzed using the STRING database, and their proteome associated with metabolism, genetic information processing, and responses to abiotic stress is discussed. Specifically, we report proteins involved in the metabolism of carbohydrates, lipids, and nucleotides, the biosynthesis of amino acids and secondary compounds, energy, oxide-reduction, transcription, translation, protein folding, sorting and degradation, and responses to abiotic stresses. The interactome of this set of proteins represents a total network composed of 218 nodes and 1792 interactions, obtained mostly from databases and text mining. The interactions among the identified proteins of the ferns D. affinis and D. oreades, together with the description of their biological functions, might contribute to a better understanding of the function and development of ferns as well as fill knowledge gaps in plant evolution.


Asunto(s)
Dryopteris , Helechos , Células Germinativas de las Plantas , Proteoma/genética , Proteómica , Helechos/genética , Dryopteris/genética , Estrés Fisiológico/genética
11.
New Phytol ; 233(6): 2614-2628, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34942024

RESUMEN

Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.


Asunto(s)
Bryopsida , Células Germinativas de las Plantas , Bryopsida/genética , Bryopsida/metabolismo , Epigénesis Genética
12.
Plant Cell ; 31(7): 1579-1597, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036599

RESUMEN

The maintenance of genome integrity over cell divisions is critical for plant development and the correct transmission of genetic information to the progeny. A key factor involved in this process is the STRUCTURAL MAINTENANCE OF CHROMOSOME5 (SMC5) and SMC6 (SMC5/6) complex, related to the cohesin and condensin complexes that control sister chromatid alignment and chromosome condensation, respectively. Here, we characterize NON-SMC ELEMENT4 (NSE4) paralogs of the SMC5/6 complex in Arabidopsis (Arabidopsis thaliana). NSE4A is expressed in meristems and accumulates during DNA damage repair. Partial loss-of-function nse4a mutants are viable but hypersensitive to DNA damage induced by zebularine. In addition, nse4a mutants produce abnormal seeds, with noncellularized endosperm and embryos that maximally develop to the heart or torpedo stage. This phenotype resembles the defects in cohesin and condensin mutants and suggests a role for all three SMC complexes in differentiation during seed development. By contrast, NSE4B is expressed in only a few cell types, and loss-of-function mutants do not have any obvious abnormal phenotype. In summary, our study shows that the NSE4A subunit of the SMC5-SMC6 complex is essential for DNA damage repair in somatic tissues and plays a role in plant reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Subunidades de Proteína/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Óvulo Vegetal/genética , Polen/genética , Unión Proteica , Semillas/genética , Transcriptoma/genética , Regulación hacia Arriba/genética
13.
Mol Cell ; 55(5): 678-93, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25132176

RESUMEN

Chromosomes are folded, spatially organized, and regulated by epigenetic marks. How chromosomal architecture is connected to the epigenome is not well understood. We show that chromosomal architecture of Arabidopsis is tightly linked to the epigenetic state. Furthermore, we show how physical constraints, such as nuclear size, correlate with the folding principles of chromatin. We also describe a nuclear structure, termed KNOT, in which genomic regions of all five Arabidopsis chromosomes interact. These KNOT ENGAGED ELEMENT (KEE) regions represent heterochromatic islands within euchromatin. Similar to PIWI-interacting RNA clusters, such as flamenco in Drosophila, KEEs represent preferred landing sites for transposable elements, which may be part of a transposon defense mechanism in the Arabidopsis nucleus.


Asunto(s)
Arabidopsis/genética , Cromatina/metabolismo , Cromosomas de las Plantas/metabolismo , Drosophila/genética , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/ultraestructura , Cromatina/química , Cromatina/ultraestructura , Cromosomas de las Plantas/química , Cromosomas de las Plantas/ultraestructura , ADN de Plantas/química , Drosophila/metabolismo , Epigenómica/métodos , Hibridación Fluorescente in Situ , Conformación de Ácido Nucleico , Análisis de Componente Principal , Análisis de Secuencia de ADN
14.
BMC Biol ; 19(1): 177, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454477

RESUMEN

BACKGROUND: Apomixis, the asexual reproduction through seeds, occurs in over 40 plant families and avoids the hidden cost of sex. Apomictic plants are thought to have an advantage in sparse populations and when colonizing new areas but may have a disadvantage in changing environments because they propagate via fixed genotypes. In this study, we separated the influences of different genetic backgrounds (potentially reflecting local adaptation) from those of the mode of reproduction, i.e., sexual vs. apomictic, on nine fitness-related traits in Hieracium pilosella L. We aimed to test whether apomixis per se may provide a fitness advantage in different competitive environments in a common garden setting. RESULTS: To separate the effects of genetic background from those of reproductive mode, we generated five families of apomictic and sexual full siblings by crossing two paternal with four maternal parents. Under competition, apomictic plants showed reproductive assurance (probability of seeding, fertility), while offspring of sexual plants with the same genetic background had a higher germination rate. Sexual plants grew better (biomass) than apomictic plants in the presence of grass as a competitor but apomictic plants spread further vegetatively (maximum stolon length) when their competitors were sexual plants of the same species. Furthermore, genetic background as represented by the five full-sibling families influenced maximum stolon length, the number of seeds, and total fitness. Under competition with grass, genetic background influenced fecundity, the number of seeds, and germination rate. CONCLUSIONS: Our results suggest that both the mode of reproduction as well as the genetic background affect the success of H. pilosella in competitive environments. Total fitness, the most relevant trait for adaptation, was only affected by the genetic background. However, we also show for the first time that apomixis per se has effects on fitness-related traits that are not confounded by-and thus independent of-the genetic background.


Asunto(s)
Apomixis , Asteraceae , Apomixis/genética , Asteraceae/genética , Antecedentes Genéticos , Fenotipo , Reproducción Asexuada/genética , Semillas/genética
15.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430514

RESUMEN

Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and space-efficient in vitro culture system. However, the molecular basis of fern growth and development has hardly been studied. Here, we report on a proteomic study that identified 417 proteins shared by gametophytes of the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. Most proteins are predicted to localize to the cytoplasm, the chloroplast, or the nucleus, and are linked to enzymatic, binding, and structural activities. A subset of 145 proteins are involved in growth, reproduction, phytohormone signaling and biosynthesis, and gene expression, including homologs of SHEPHERD (SHD), HEAT SHOCK PROTEIN 90-5 (CR88), TRP4, BOBBER 1 (BOB1), FLAVONE 3'-O-METHYLTRANSFERASE 1 (OMT1), ZEAXANTHIN EPOXIDASE (ABA1), GLUTAMATE DESCARBOXYLASE 1 (GAD), and dsRNA-BINDING DOMAIN-LIKE SUPERFAMILY PROTEIN (HLY1). Nearly 25% of the annotated proteins are associated with responses to biotic and abiotic stimuli. As for biotic stress, the proteins PROTEIN SGT1 HOMOLOG B (SGT1B), SUPPRESSOR OF SA INSENSITIVE2 (SSI2), PHOSPHOLIPASE D ALPHA 1 (PLDALPHA1), SERINE/THREONINE-PROTEIN KINASE SRK2E (OST1), ACYL CARRIER PROTEIN 4 (ACP4), and NONHOST RESISTANCE TO P. S. PHASEOLICOLA1 (GLPK) are worth mentioning. Regarding abiotic stimuli, we found proteins associated with oxidative stress: SUPEROXIDE DISMUTASE[CU-ZN] 1 (CSD1), and GLUTATHIONE S-TRANSFERASE U19 (GSTU19), light intensity SERINE HYDROXYMETHYLTRANSFERASE 1 (SHM1) and UBIQUITIN-CONJUGATING ENZYME E2 35 (UBC35), salt and heavy metal stress included MITOCHONDRIAL PHOSPHATE CARRIER PROTEIN 3 (PHT3;1), as well as drought and thermotolerance: LEA7, DEAD-BOX ATP-DEPENDENT RNA HELICASE 38 (LOS4), and abundant heat-shock proteins and other chaperones. In addition, we identified interactomes using the STRING platform, revealing protein-protein associations obtained from co-expression, co-occurrence, text mining, homology, databases, and experimental datasets. By focusing on ferns, this proteomic study increases our knowledge on plant development and evolution, and may inspire future applications in crop species.


Asunto(s)
Dryopteris , Helechos , Dryopteris/genética , Helechos/genética , Proteoma , Proteómica , Reguladores del Crecimiento de las Plantas
16.
Plant J ; 101(6): 1378-1396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692190

RESUMEN

Marchantia polymorpha has recently become a prime model for cellular, evo-devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule-scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high-density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map-based cloning, feasible.


Asunto(s)
Genoma de Planta/genética , Marchantia/genética , Centrómero/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Ligamiento Genético , Modelos Genéticos , Recombinación Genética/genética , Secuencias Repetidas en Tándem/genética
17.
BMC Biol ; 17(1): 75, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533702

RESUMEN

BACKGROUND: Cassava is an important food crop in tropical and sub-tropical regions worldwide. In Africa, cassava production is widely affected by cassava mosaic disease (CMD), which is caused by the African cassava mosaic geminivirus that is transmitted by whiteflies. Cassava breeders often use a single locus, CMD2, for introducing CMD resistance into susceptible cultivars. The CMD2 locus has been genetically mapped to a 10-Mbp region, but its organization and genes as well as their functions are unknown. RESULTS: We report haplotype-resolved de novo assemblies and annotations of the genomes for the African cassava cultivar TME (tropical Manihot esculenta), which is the origin of CMD2, and the CMD-susceptible cultivar 60444. The assemblies provide phased haplotype information for over 80% of the genomes. Haplotype comparison identified novel features previously hidden in collapsed and fragmented cassava genomes, including thousands of allelic variants, inter-haplotype diversity in coding regions, and patterns of diversification through allele-specific expression. Reconstruction of the CMD2 locus revealed a highly complex region with nearly identical gene sets but limited microsynteny between the two cultivars. CONCLUSIONS: The genome maps of the CMD2 locus in both 60444 and TME3, together with the newly annotated genes, will help the identification of the causal genetic basis of CMD2 resistance to geminiviruses. Our de novo cassava genome assemblies will also facilitate genetic mapping approaches to narrow the large CMD2 region to a few candidate genes for better informed strategies to develop robust geminivirus resistance in susceptible cassava cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Haplotipos/genética , Manihot/genética , Enfermedades de las Plantas/genética , Mapeo Cromosómico/métodos , Susceptibilidad a Enfermedades , Geminiviridae , Predisposición Genética a la Enfermedad , Anotación de Secuencia Molecular
18.
Genes Dev ; 26(16): 1837-50, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22855791

RESUMEN

Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Metilación de ADN , Impresión Genómica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen/fisiología , Regiones Promotoras Genéticas/genética , Semillas/genética , Transgenes/genética
19.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396579

RESUMEN

Insects fall prey to the Venus flytrap (Dionaea muscipula) when they touch the sensory hairs located on the flytrap lobes, causing sudden trap closure. The mechanical stimulus imparted by the touch produces an electrical response in the sensory cells of the trigger hair. These cells are found in a constriction near the hair base, where a notch appears around the hair's periphery. There are mechanosensitive ion channels (MSCs) in the sensory cells that open due to a change in membrane tension; however, the kinematics behind this process is unclear. In this study, we investigate how the stimulus acts on the sensory cells by building a multi-scale hair model, using morphometric data obtained from µ-CT scans. We simulated a single-touch stimulus and evaluated the resulting cell wall stretch. Interestingly, the model showed that high stretch values are diverted away from the notch periphery and, instead, localized in the interior regions of the cell wall. We repeated our simulations for different cell shape variants to elucidate how the morphology influences the location of these high-stretch regions. Our results suggest that there is likely a higher mechanotransduction activity in these 'hotspots', which may provide new insights into the arrangement and functioning of MSCs in the flytrap.


Asunto(s)
Droseraceae/fisiología , Insectos/fisiología , Mecanotransducción Celular/fisiología , Hojas de la Planta/fisiología , Algoritmos , Animales , Fenómenos Biomecánicos , Estructuras de la Membrana Celular/fisiología , Droseraceae/citología , Fenómenos Electromagnéticos , Hojas de la Planta/citología , Transducción de Señal/fisiología
20.
Plant Physiol ; 176(3): 1981-1992, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29247121

RESUMEN

Leu-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal Leu-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis (Arabidopsisthaliana). Mutations in multiple pollen-expressed lrx genes cause severe defects in pollen germination and pollen tube growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the pollen tube growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modeling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Fenómenos Biofísicos , Calcio/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/ultraestructura , Análisis de Elementos Finitos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Proteínas Repetidas Ricas en Leucina , Mutación/genética , Fenotipo , Polen/citología , Polen/genética , Polen/ultraestructura , Tubo Polínico/citología , Tubo Polínico/genética , Tubo Polínico/ultraestructura , Proteínas/genética , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA