Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(3): 672-687.e27, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053426

RESUMEN

TCR-signaling strength generally correlates with peptide-MHC binding affinity; however, exceptions exist. We find high-affinity, yet non-stimulatory, interactions occur with high frequency in the human T cell repertoire. Here, we studied human TCRs that are refractory to activation by pMHC ligands despite robust binding. Analysis of 3D affinity, 2D dwell time, and crystal structures of stimulatory versus non-stimulatory TCR-pMHC interactions failed to account for their different signaling outcomes. Using yeast pMHC display, we identified peptide agonists of a formerly non-responsive TCR. Single-molecule force measurements demonstrated the emergence of catch bonds in the activating TCR-pMHC interactions, correlating with exclusion of CD45 from the TCR-APC contact site. Molecular dynamics simulations of TCR-pMHC disengagement distinguished agonist from non-agonist ligands based on the acquisition of catch bonds within the TCR-pMHC interface. The isolation of catch bonds as a parameter mediating the coupling of TCR binding and signaling has important implications for TCR and antigen engineering for immunotherapy.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/fisiología , Activación de Linfocitos/fisiología , Adulto , Femenino , Humanos , Cinética , Ligandos , Complejo Mayor de Histocompatibilidad/fisiología , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Oligopéptidos , Péptidos , Unión Proteica/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal , Imagen Individual de Molécula , Linfocitos T/fisiología
2.
Cell ; 152(3): 543-56, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374349

RESUMEN

How the epidermal growth factor receptor (EGFR) activates is incompletely understood. The intracellular portion of the receptor is intrinsically active in solution, and to study its regulation, we measured autophosphorylation as a function of EGFR surface density in cells. Without EGF, intact EGFR escapes inhibition only at high surface densities. Although the transmembrane helix and the intracellular module together suffice for constitutive activity even at low densities, the intracellular module is inactivated when tethered on its own to the plasma membrane, and fluorescence cross-correlation shows that it fails to dimerize. NMR and functional data indicate that activation requires an N-terminal interaction between the transmembrane helices, which promotes an antiparallel interaction between juxtamembrane segments and release of inhibition by the membrane. We conclude that EGF binding removes steric constraints in the extracellular module, promoting activation through N-terminal association of the transmembrane helices.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/química , Transducción de Señal , Animales , Células COS , Membrana Celular/química , Chlorocebus aethiops , Dimerización , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares
3.
Cell ; 146(5): 732-45, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884935

RESUMEN

Calcium/calmodulin-dependent kinase II (CaMKII) forms a highly conserved dodecameric assembly that is sensitive to the frequency of calcium pulse trains. Neither the structure of the dodecameric assembly nor how it regulates CaMKII are known. We present the crystal structure of an autoinhibited full-length human CaMKII holoenzyme, revealing an unexpected compact arrangement of kinase domains docked against a central hub, with the calmodulin-binding sites completely inaccessible. We show that this compact docking is important for the autoinhibition of the kinase domains and for setting the calcium response of the holoenzyme. Comparison of CaMKII isoforms, which differ in the length of the linker between the kinase domain and the hub, demonstrates that these interactions can be strengthened or weakened by changes in linker length. This equilibrium between autoinhibited states provides a simple mechanism for tuning the calcium response without changes in either the hub or the kinase domains.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
4.
Proc Natl Acad Sci U S A ; 119(19): e2122531119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507881

RESUMEN

We reconstitute a phosphotyrosine-mediated protein condensation phase transition of the ∼200 residue cytoplasmic tail of the epidermal growth factor receptor (EGFR) and the adaptor protein, Grb2, on a membrane surface. The phase transition depends on phosphorylation of the EGFR tail, which recruits Grb2, and crosslinking through a Grb2-Grb2 binding interface. The Grb2 Y160 residue plays a structurally critical role in the Grb2-Grb2 interaction, and phosphorylation or mutation of Y160 prevents EGFR:Grb2 condensation. By extending the reconstitution experiment to include the guanine nucleotide exchange factor, SOS, and its substrate Ras, we further find that the condensation state of the EGFR tail controls the ability of SOS, recruited via Grb2, to activate Ras. These results identify an EGFR:Grb2 protein condensation phase transition as a regulator of signal propagation from EGFR to the MAPK pathway.


Asunto(s)
Receptores ErbB , Transducción de Señal , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/metabolismo , Fosforilación , Fosfotirosina/metabolismo
5.
Biophys J ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39021073

RESUMEN

Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.

6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740968

RESUMEN

Son of Sevenless (SOS) is a Ras guanine nucleotide exchange factor (GEF) that plays a central role in numerous cellular signaling pathways. Like many other signaling molecules, SOS is autoinhibited in the cytosol and activates only after recruitment to the membrane. The mean activation time of individual SOS molecules has recently been measured to be ∼60 s, which is unexpectedly long and seemingly contradictory with cellular signaling timescales, which have been measured to be as fast as several seconds. Here, we rectify this discrepancy using a first-passage time analysis to reconstruct the effective signaling timescale of multiple SOS molecules from their single-molecule activation kinetics. Along with corresponding experimental measurements, this analysis reveals how the functional response time, comprised of many slowly activating molecules, can become substantially faster than the average molecular kinetics. This consequence stems from the enzymatic processivity of SOS in a highly out-of-equilibrium reaction cycle during receptor triggering. Ultimately, rare, early activation events dominate the macroscopic reaction dynamics.


Asunto(s)
Modelos Químicos , Proteínas Son Of Sevenless/metabolismo , Proteínas ras/metabolismo , Activación Enzimática , Cinética , Imagen Individual de Molécula
7.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495347

RESUMEN

Multicolor single-molecule tracking (SMT) provides a powerful tool to mechanistically probe molecular interactions in living cells. However, because of the limitations in the optical and chemical properties of currently available fluorophores and the multiprotein labeling strategies, intracellular multicolor SMT remains challenging for general research studies. Here, we introduce a practical method employing a nanopore-electroporation (NanoEP) technique to deliver multiple organic dye-labeled proteins into living cells for imaging. It can be easily expanded to three channels in commercial microscopes or be combined with other in situ labeling methods. Utilizing NanoEP, we demonstrate three-color SMT for both cytosolic and membrane proteins. Specifically, we simultaneously monitored single-molecule events downstream of EGFR signaling pathways in living cells. The results provide detailed resolution of the spatial localization and dynamics of Grb2 and SOS recruitment to activated EGFR along with the resultant Ras activation.


Asunto(s)
Nanoporos , Proteínas/metabolismo , Imagen Individual de Molécula , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Ratones , Linfocitos T/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34789575

RESUMEN

Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system-in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product-consisting of a specific lipid composition or Ras activity state-depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.


Asunto(s)
Tamaño de la Célula , Enzimas/metabolismo , Membranas/fisiología , Retroalimentación , Cinética , Membrana Dobles de Lípidos , Lípidos , Modelos Biológicos , Monoéster Fosfórico Hidrolasas , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653954

RESUMEN

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras)/química , Quinasas raf/química , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Humanos , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
10.
Small ; 19(20): e2207805, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811150

RESUMEN

Photosynthetic light harvesting requires efficient energy transfer within dynamic networks of light-harvesting complexes embedded within phospholipid membranes. Artificial light-harvesting models are valuable tools for understanding the structural features underpinning energy absorption and transfer within chromophore arrays. Here, a method for attaching a protein-based light-harvesting model to a planar, fluid supported lipid bilayer (SLB) is developed.  The protein model consists of the tobacco mosaic viral capsid proteins that are gene-doubled to create a tandem dimer (dTMV). Assemblies of dTMV break the facial symmetry of the double disk to allow for differentiation between the disk faces. A single reactive lysine residue is incorporated into the dTMV assemblies for the site-selective attachment of chromophores for light absorption. On the opposing dTMV face, a cysteine residue is incorporated for the bioconjugation of a peptide containing a polyhistidine tag for association with SLBs. The dual-modified dTMV complexes show significant association with SLBs and exhibit mobility on the bilayer. The techniques used herein offer a new method for protein-surface attachment and provide a platform for evaluating excited state energy transfer events in a dynamic, fully synthetic artificial light-harvesting system.


Asunto(s)
Fotosíntesis , Proteínas , Transferencia de Energía , Membrana Dobles de Lípidos/química
11.
Proc Natl Acad Sci U S A ; 117(42): 26020-26030, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020303

RESUMEN

T cells exhibit remarkable sensitivity and selectivity in detecting and responding to agonist peptides (p) bound to MHC molecules in a sea of self pMHC molecules. Despite much work, understanding of the underlying mechanisms of distinguishing such ligands remains incomplete. Here, we quantify T cell discriminatory capacity using channel capacity, a direct measure of the signaling network's ability to discriminate between antigen-presenting cells (APCs) displaying either self ligands or a mixture of self and agonist ligands. This metric shows how differences in information content between these two types of peptidomes are decoded by the topology and rates of kinetic proofreading signaling steps inside T cells. Using channel capacity, we constructed numerically substantiated hypotheses to explain the discriminatory role of a recently identified slow LAT Y132 phosphorylation step. Our results revealed that in addition to the number and kinetics of sequential signaling steps, a key determinant of discriminatory capability is spatial localization of a minimum number of these steps to the engaged TCR. Biochemical and imaging experiments support these findings. Our results also reveal the discriminatory role of early negative feedback and necessary amplification conferred by late positive feedback.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Presentadoras de Antígenos/inmunología , Activación de Linfocitos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Humanos , Células Jurkat , Cinética , Ligandos , Modelos Teóricos , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
12.
Biophys J ; 121(10): 1897-1908, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35430415

RESUMEN

Cells sense a variety of extracellular growth factors and signaling molecules through numerous distinct receptor tyrosine kinases (RTKs) on the cell surface. In many cases, the same intracellular signaling molecules interact with more than one type of RTK. How signals from different RTKs retain the identity of the triggering receptor and how (or if) different receptors may synergize or compete remain largely unknown. Here we utilize an experimental strategy, combining microscale patterning and single-molecule imaging, to measure the competition between ephrin-A1:EphA2 and epidermal growth factor (EGF):EGF receptor (EGFR) ligand-receptor complexes for the shared downstream signaling molecules, Grb2 and SOS. The results reveal a distinct hierarchy, in which newly formed EGF:EGFR complexes outcompete ephrin-A1:EphA2 for Grb2 and SOS, revealing a type of negative crosstalk interaction fundamentally controlled by chemical mass action and protein copy number limitations.


Asunto(s)
Efrina-A1 , Receptor EphA2 , Factor de Crecimiento Epidérmico , Receptores ErbB/metabolismo , Retroalimentación , Receptor EphA2/metabolismo , Transducción de Señal
13.
Nat Immunol ; 11(1): 90-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20010844

RESUMEN

The organization and dynamics of receptors and other molecules in the plasma membrane are not well understood. Here we analyzed the spatio-temporal dynamics of T cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat), a key adaptor molecule in the TCR signaling pathway, in T cell membranes using high-speed photoactivated localization microscopy, dual-color fluorescence cross-correlation spectroscopy and transmission electron microscopy. In quiescent T cells, both molecules existed in separate membrane domains (protein islands), and these domains concatenated after T cell activation. These concatemers were identical to signaling microclusters, a prominent hallmark of T cell activation. This separation versus physical juxtapositioning of receptor domains and domains containing downstream signaling molecules in quiescent versus activated T cells may be a general feature of plasma membrane-associated signal transduction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Membrana Celular/ultraestructura , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Activación de Linfocitos/inmunología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/genética , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente/métodos , Modelos Biológicos , Fosfoproteínas/genética , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Retroviridae/genética , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/ultraestructura , Transfección
14.
Nat Rev Mol Cell Biol ; 11(5): 342-52, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20354536

RESUMEN

The coordinated organization of cell membrane receptors into diverse micrometre-scale spatial patterns is emerging as an important theme of intercellular signalling, as exemplified by immunological synapses. Key characteristics of these patterns are that they transcend direct protein-protein interactions, emerge transiently and modulate signal transduction. Such cooperativity over multiple length scales presents new and intriguing challenges for the study and ultimate understanding of cellular signalling. As a result, new experimental strategies have emerged to manipulate the spatial organization of molecules inside living cells. The resulting spatial mutations yield insights into the interweaving of the spatial, mechanical and chemical aspects of intercellular signalling.


Asunto(s)
Uniones Intercelulares/metabolismo , Transducción de Señal , Animales , Humanos , Sinapsis Inmunológicas/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(22): 10798-10803, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31076553

RESUMEN

The transformation of molecular binding events into cellular decisions is the basis of most biological signal transduction. A fundamental challenge faced by these systems is that reliance on protein-ligand chemical affinities alone generally results in poor sensitivity to ligand concentration, endangering the system to error. Here, we examine the lipid-binding pleckstrin homology and Tec homology (PH-TH) module of Bruton's tyrosine kinase (Btk). Using fluorescence correlation spectroscopy (FCS) and membrane-binding kinetic measurements, we identify a phosphatidylinositol (3-5)-trisphosphate (PIP3) sensing mechanism that achieves switch-like sensitivity to PIP3 levels, surpassing the intrinsic affinity discrimination of PIP3:PH binding. This mechanism employs multiple PIP3 binding as well as dimerization of Btk on the membrane surface. Studies in live cells confirm that mutations at the dimer interface and peripheral site produce effects comparable to that of the kinase-dead Btk in vivo. These results demonstrate how a single protein module can institute an allosteric counting mechanism to achieve high-precision discrimination of ligand concentration. Furthermore, this activation mechanism distinguishes Btk from other Tec family member kinases, Tec and Itk, which we show are not capable of dimerization through their PH-TH modules. This suggests that Btk plays a critical role in the stringency of the B cell response, whereas T cells rely on other mechanisms to achieve stringency.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/química , Agammaglobulinemia Tirosina Quinasa/metabolismo , Transducción de Señal/fisiología , Animales , Linfocitos B/metabolismo , Línea Celular , Pollos , Ratones , Modelos Moleculares , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos/fisiología , Multimerización de Proteína
16.
Proc Natl Acad Sci U S A ; 116(30): 15013-15022, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31278151

RESUMEN

Phosphorylation reactions, driven by competing kinases and phosphatases, are central elements of cellular signal transduction. We reconstituted a native eukaryotic lipid kinase-phosphatase reaction that drives the interconversion of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P2] on membrane surfaces. This system exhibited bistability and formed spatial composition patterns on supported membranes. In smaller confined regions of membrane, rapid diffusion ensures the system remains spatially homogeneous, but the final outcome-a predominantly PI(4)P or PI(4,5)P2 membrane composition-was governed by the size of the reaction environment. In larger confined regions, interplay between the reactions, diffusion, and confinement created a variety of differentially patterned states, including polarization. Experiments and kinetic modeling reveal how these geometric confinement effects arise from a mechanism based on stochastic fluctuations in the copy number of membrane-bound kinases and phosphatases. The underlying requirements for such behavior are unexpectedly simple and likely to occur in natural biological signaling systems.


Asunto(s)
Proteínas Bacterianas/química , Factores de Intercambio de Guanina Nucleótido/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolasas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Cinética , Legionella pneumophila/química , Legionella pneumophila/enzimología , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipasa C delta/química , Fosfolipasa C delta/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Procesos Estocásticos , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
17.
Biophys J ; 120(18): 3869-3880, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34453921

RESUMEN

Under physiological conditions, peptide-major histocompatibility complex (pMHC) molecules can trigger T cell receptors (TCRs) as monovalent ligands that are sparsely distributed on the plasma membrane of an antigen-presenting cell. TCRs can also be triggered by artificial clustering, such as with pMHC tetramers or antibodies; however, these strategies circumvent many of the natural ligand discrimination mechanisms of the T cell and can elicit nonphysiological signaling activity. We have recently introduced a synthetic TCR agonist composed of an anti-TCRß Fab' antibody fragment covalently bound to a DNA oligonucleotide, which serves as a membrane anchor. This Fab'-DNA ligand efficiently triggers TCR as a monomer when membrane associated and exhibits a potency and activation profile resembling agonist pMHC. In this report, we explore the geometric requirements for efficient TCR triggering and cellular activation by Fab'-DNA ligands. We find that T cells are insensitive to the ligand binding epitope on the TCR complex but that length of the DNA tether is important. Increasing, the intermembrane distance spanned by Fab'-DNA:TCR complexes decreases TCR triggering efficiency and T cell activation potency, consistent with the kinetic-segregation model of TCR triggering. These results establish design parameters for constructing synthetic TCR agonists that are able to activate polyclonal T cell populations, such as T cells from a human patient, in a similar manner as the native pMHC ligand.


Asunto(s)
Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Membrana Celular/metabolismo , Epítopos , Humanos , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
18.
Biophys J ; 120(7): 1257-1265, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33080222

RESUMEN

Lipid miscibility phase separation has long been considered to be a central element of cell membrane organization. More recently, protein condensation phase transitions, into three-dimensional droplets or in two-dimensional lattices on membrane surfaces, have emerged as another important organizational principle within cells. Here, we reconstitute the linker for activation of T cells (LAT):growth-factor-receptor-bound protein 2 (Grb2):son of sevenless (SOS) protein condensation on the surface of giant unilamellar vesicles capable of undergoing lipid phase separations. Our results indicate that the assembly of the protein condensate on the membrane surface can drive lipid phase separation. This phase transition occurs isothermally and is governed by tyrosine phosphorylation on LAT. Furthermore, we observe that the induced lipid phase separation drives localization of the SOS substrate, K-Ras, into the LAT:Grb2:SOS protein condensate.


Asunto(s)
Lípidos de la Membrana , Proteínas de la Membrana , Proteína Adaptadora GRB2/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación , Fosfotirosina , Proteínas Son Of Sevenless/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(25): E5696-E5705, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29866846

RESUMEN

Recent studies have revealed pronounced effects of the spatial distribution of EphA2 receptors on cellular response to receptor activation. However, little is known about molecular mechanisms underlying this spatial sensitivity, in part due to lack of experimental systems. Here, we introduce a hybrid live-cell patterned supported lipid bilayer experimental platform in which the sites of EphA2 activation and integrin adhesion are spatially controlled. Using a series of live-cell imaging and single-molecule tracking experiments, we map the transmission of signals from ephrinA1:EphA2 complexes. Results show that ligand-dependent EphA2 activation induces localized myosin-dependent contractions while simultaneously increasing focal adhesion dynamics throughout the cell. Mechanistically, Src kinase is activated at sites of ephrinA1:EphA2 clustering and subsequently diffuses on the membrane to focal adhesions, where it up-regulates FAK and paxillin tyrosine phosphorylation. EphrinA1:EphA2 signaling triggers multiple cellular responses with differing spatial dependencies to enable a directed migratory response to spatially resolved contact with ephrinA1 ligands.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Efrina-A1/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Receptor EphA2/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Humanos , Ligandos , Membrana Dobles de Lípidos/metabolismo , Miosinas/metabolismo , Paxillin/metabolismo , Fosforilación/fisiología , Regulación hacia Arriba/fisiología , Familia-src Quinasas/metabolismo
20.
Biophys J ; 118(12): 2879-2893, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32407684

RESUMEN

The natural peptide-major histocompatibility complex (pMHC) ligand for T cell receptors (TCRs) is inactive from solution yet capable of activating T cells at single-molecule levels when membrane-associated. This distinctive feature stems from the mechanism of TCR activation, which is thought to involve steric phosphatase exclusion as well as direct mechanical forces. It is possible to defeat this mechanism and activate T cells with solution ligands by cross-linking pMHC or using multivalent antibodies to TCR. However, these widely used strategies activate TCRs through a nonphysiological mechanism and can produce different activation profiles than natural, monovalent, membrane-associated pMHC. Here, we introduce a strictly monovalent anti-TCRß H57 Fab' ligand that, when coupled to a supported lipid bilayer via DNA complementation, triggers TCRs and activates nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT) with a similar potency to pMHC in primary murine T cells. Importantly, like monovalent pMHC and unlike bivalent antibodies, monovalent Fab'-DNA triggers TCRs only when physically coupled to the membrane, and only around 100 individual Fab':TCR interactions are necessary to stimulate early T cell activation.


Asunto(s)
Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Animales , Ligandos , Complejo Mayor de Histocompatibilidad , Ratones , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA