Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(31): e202403647, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752721

RESUMEN

The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.


Asunto(s)
Sistemas CRISPR-Cas , Citosol , Humanos , Citosol/metabolismo , ADN/química , ADN/metabolismo , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/metabolismo , Proteínas/química , Proteínas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Células HeLa , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo
2.
Crit Rev Biotechnol ; 40(3): 357-364, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32075446

RESUMEN

Synthetic biology emerged in the USA and Europe twenty years ago and quickly developed innovative research and technology as a result of continued funding. Synthetic biology is also growing in many developing countries of Africa, Asia and Latin America, where it could have a large economic impact by helping its use of genetic biodiversity in order to boost existing industries. Starting in 2011, Argentine synthetic biology developed along an idiosyncratic path. In 2011-2012, the main focus was not exclusively research but also on community building through teaching and participation in iGEM, following the template of the early "MIT school" of synthetic biology. In 2013-2015, activities diversified and included society-centered projects, social science studies on synthetic biology and bioart. Standard research outputs such as articles and industrial applications helped consolidate several academic working groups. Since 2016, the lack of a critical mass of researchers and a funding crisis were partially compensated by establishing links with Latin American synthetic biologists and with other socially oriented open technology collectives. The TECNOx community is a central node in this growing research and technology network. The first four annual TECNOx meetings brought together synthetic biologists with other open science and engineering platforms and explored the relationship of Latin American technologies with entrepreneurship, open hardware, ethics and human rights. In sum, the socioeconomic context encouraged Latin American synthetic biology to develop in a meandering and diversifying manner. This revealed alternative ways for growth of the field that may be relevant to other developing countries.


Asunto(s)
Biología Sintética/educación , Biología Sintética/tendencias , Argentina , Países en Desarrollo , Humanos , América Latina , Características de la Residencia , Ciencias Sociales , Biología Sintética/métodos
3.
Nat Methods ; 10(10): 1021-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23995386

RESUMEN

Fluorescence resonance energy transfer (FRET)-based detection of protein interactions is limited by the very narrow range of FRET-permitting distances. We show two different strategies for the rational design of weak helper interactions that co-recruit donor and acceptor fluorophores for a more robust detection of bimolecular FRET: (i) in silico design of electrostatically driven encounter complexes and (ii) fusion of tunable domain-peptide interaction modules based on WW or SH3 domains. We tested each strategy for optimization of FRET between (m)Citrine and mCherry, which do not natively interact. Both approaches yielded comparable and large increases in FRET efficiencies with little or no background. Helper-interaction modules can be fused to any pair of fluorescent proteins and could, we found, enhance FRET between mTFP1 and mCherry as well as between mTurquoise2 and mCitrine. We applied enhanced helper-interaction FRET (hiFRET) probes to study the binding between full-length H-Ras and Raf1 as well as the drug-induced interaction between Raf1 and B-Raf.


Asunto(s)
Proteínas Bacterianas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Mapeo de Interacción de Proteínas/métodos , Células HeLa , Humanos , Modelos Químicos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Electricidad Estática , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Proteína Fluorescente Roja
4.
Adv Sci (Weinh) ; 11(27): e2306716, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38161228

RESUMEN

Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Oro/química , Electrodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Anticuerpos de Dominio Único/química
5.
Sci Rep ; 13(1): 20349, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990068

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, has emphasized the necessity for scalable diagnostic workflows using locally produced reagents and basic laboratory equipment with minimal dependence on global supply chains. We introduce an open-source automated platform for high-throughput RNA extraction and pathogen diagnosis, which uses reagents almost entirely produced in-house. This platform integrates our methods for self-manufacturing magnetic nanoparticles and qRT-PCR reagents-both of which have received regulatory approval for clinical use-with an in-house, open-source robotic extraction protocol. It also incorporates our "Nanopore Sequencing of Isothermal Rapid Viral Amplification for Near Real-time Analysis" (NIRVANA) technology, designed for tracking SARS-CoV-2 mutations and variants. The platform exhibits high reproducibility and consistency without cross-contamination, and its limit of detection, sensitivity, and specificity are comparable to commercial assays. Automated NIRVANA effectively identifies circulating SARS-CoV-2 variants. Our in-house, cost-effective reagents, automated diagnostic workflows, and portable genomic surveillance strategies provide a scalable and rapid solution for COVID-19 diagnosis and variant tracking, essential for current and future pandemic responses.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , Pandemias , Análisis Costo-Beneficio , Reproducibilidad de los Resultados , Técnicas de Laboratorio Clínico/métodos , ARN Viral/genética , ARN Viral/análisis , Sensibilidad y Especificidad , Genómica
6.
Nucleic Acids Res ; 38(8): 2663-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20385577

RESUMEN

Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins-their versatility, dynamics and interactions-also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to 'refacture' protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design.


Asunto(s)
Ingeniería de Proteínas/métodos , Mapeo de Interacción de Proteínas , ADN/química , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Transducción de Señal
7.
Nucleic Acids Res ; 38(8): 2645-62, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20215443

RESUMEN

Here, we propose a framework for the design of synthetic protein networks from modular protein-protein or protein-peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part-based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general-purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.


Asunto(s)
Ingeniería de Proteínas/métodos , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Clonación Molecular , ADN/química , Transferencia Resonante de Energía de Fluorescencia , Leucina Zippers , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Resonancia por Plasmón de Superficie , Proteína 1A de Unión a Tacrolimus/metabolismo
8.
Biosensors (Basel) ; 12(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35200314

RESUMEN

CRISPR-Cas systems have a great and still largely untapped potential for in vitro applications, in particular, for RNA biosensing. However, there is currently no systematic guide on selecting the most appropriate RNA-targeting CRISPR-Cas system for a given application among thousands of potential candidates. We provide an overview of the currently described Cas effector systems and review existing Cas-based RNA detection methods. We then propose a set of systematic selection criteria for selecting CRISPR-Cas candidates for new applications. Using this approach, we identify four candidates for in vitro RNA.


Asunto(s)
Sistemas CRISPR-Cas , ARN
9.
PLoS One ; 17(3): e0260420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312702

RESUMEN

Cell-free transcription and translation systems promise to accelerate and simplify the engineering of proteins, biological circuits and metabolic pathways. Their encapsulation on microfluidic platforms can generate millions of cell-free reactions in picoliter volume droplets. However, current methods struggle to create DNA diversity between droplets while also reaching sufficient protein expression levels. In particular, efficient multi-gene expression has remained elusive. We here demonstrate that co-encapsulation of DNA-coated beads with a defined cell-free system allows high protein expression while also supporting genetic diversity between individual droplets. We optimize DNA loading on commercially available microbeads through direct binding as well as through the sequential coupling of up to three genes via a solid-phase Golden Gate assembly or BxB1 integrase-based recombineering. Encapsulation with an off-the-shelf microfluidics device allows for single or multiple protein expression from a single DNA-coated bead per 14 pL droplet. We envision that this approach will help to scale up and parallelize the rapid prototyping of more complex biological systems.


Asunto(s)
Técnicas Analíticas Microfluídicas , ADN/genética , Expresión Génica , Dispositivos Laboratorio en un Chip , Microfluídica
10.
Front Microbiol ; 13: 977673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071959

RESUMEN

Quorum quenching (QQ) is the enzymatic degradation of molecules used by bacteria for synchronizing their behavior within communities. QQ has attracted wide attention due to its potential to inhibit biofilm formation and suppress the production of virulence factors. Through its capacity to limit biofouling and infections, QQ has applications in water treatment, aquaculture, and healthcare. Several different QQ enzymes have been described; however, they often lack the high stability and catalytic efficiency required for industrial applications. Previously, we identified genes from genome sequences of Red Sea sediment bacteria encoding potential QQ enzymes. In this study, we report that one of them, named LrsL, is a metallo-ß-lactamase superfamily QQ enzyme with outstanding catalytic features. X-ray crystallography shows that LrsL is a zinc-binding dimer. LrsL has an unusually hydrophobic substrate binding pocket that can accommodate a broad range of acyl-homoserine lactones (AHLs) with exceptionally high affinity. In vitro, LrsL achieves the highest catalytic efficiency reported thus far for any QQ enzyme with a Kcat /KM of 3 × 107. LrsL effectively inhibited Pseudomonas aeruginosa biofilm formation without affecting bacterial growth. Furthermore, LrsL suppressed the production of exopolysaccharides required for biofilm production. These features, and its capacity to regain its function after prolonged heat denaturation, identify LrsL as a robust and unusually efficient QQ enzyme for clinical and industrial applications.

11.
Adv Mater ; 34(35): e2202972, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35772173

RESUMEN

Conventional biosensors rely on the diffusion-dominated transport of the target analyte to the sensor surface. Consequently, they require an incubation step that may take several hours to allow for the capture of analyte molecules by sensor biorecognition sites. This incubation step is a primary cause of long sample-to-result times. Here, alternating current electrothermal flow (ACET) is integrated in an organic electrochemical transistor (OECT)-based sensor to accelerate the device operation. ACET is applied to the gate electrode functionalized with nanobody-SpyCatcher fusion proteins. Using the SARS-CoV-2 spike protein in human saliva as an example target, it is shown that ACET enables protein recognition within only 2 min of sample exposure, supporting its use in clinical practice. The ACET integrated sensor exhibits better selectivity, higher sensitivity, and lower limit of detection than the equivalent sensor with diffusion-dominated operation. The performance of ACET integrated sensors is compared with two types of organic semiconductors in the channel and grounds for device-to-device variations are investigated. The results provide guidelines for the channel material choice in OECT-based biochemical sensors, and demonstrate that ACET integration substantially decreases the detection speed while increasing the sensitivity and selectivity of transistor-based sensors.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Biosensibles/métodos , Convección , Técnicas Electroquímicas/métodos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Transistores Electrónicos
12.
Bioinformatics ; 26(21): 2782-3, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20841324

RESUMEN

SUMMARY: Synthetic Biology is advanced by many users and relies on the assembly of genetic elements to devices, systems and finally genomes. SynBioWave is a software suite that enables multiple distributed users to analyze and construct genetic parts in real-time collaboration. It builds on Google Wave and provides an extensible robot-robot-user communication framework, a menu driven user interface, biological data handling including DAS and an internal database communication. We demonstrate its use by implementing robots for gene-data retrieval, manipulation and display. The initial development of SynBioWave demonstrates the power of the underlying Google Wave protocol for Synthetic Biology and lays the foundation for continuous and user-friendly extensions. Specialized wave-robots with a manageable set of capabilities will divide and conquer the complex task of creating a genome in silico. AVAILABILITY: The robot is available at SynBioWave@appspot.com, the source code at http://synbiowave.sourceforge.net


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Bases de Datos Genéticas , Genoma , Biología Sintética
13.
Nat Biomed Eng ; 5(7): 666-677, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031558

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 µl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.


Asunto(s)
Técnicas Biosensibles/métodos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Nanotecnología/métodos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , COVID-19/virología , Humanos , Anticuerpos de Dominio Único/inmunología
14.
J Integr Bioinform ; 18(3)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34098590

RESUMEN

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Humanos , Lenguaje
15.
Front Bioeng Biotechnol ; 8: 1009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015004

RESUMEN

The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3 specification both in comparison to previous versions of SBOL and through practical examples of its use.

16.
J Integr Bioinform ; 17(2-3)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32589605

RESUMEN

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Lenguaje , Modelos Biológicos , Programas Informáticos
17.
J Integr Bioinform ; 17(2-3)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32543457

RESUMEN

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.2 of SBOL Visual, which builds on the prior SBOL Visual 2.1 in several ways. First, the grounding of molecular species glyphs is changed from BioPAX to SBO, aligning with the use of SBO terms for interaction glyphs. Second, new glyphs are added for proteins, introns, and polypeptide regions (e. g., protein domains), the prior recommended macromolecule glyph is deprecated in favor of its alternative, and small polygons are introduced as alternative glyphs for simple chemicals.


Asunto(s)
Lenguajes de Programación , Biología Sintética , Humanos , Lenguaje
18.
Proteins ; 76(3): 677-92, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19280599

RESUMEN

The accurate description and analysis of protein-protein interfaces remains a challenging task. Traditional definitions, based on atomic contacts or changes in solvent accessibility, tend to over- or underpredict the interface itself and cannot discriminate active from less relevant parts. We here extend a fast, parameter-free and purely geometric definition of protein interfaces and introduce the shelling order of Voronoi facets as a novel measure for an atom's depth inside the interface. Our analysis of 54 protein-protein complexes reveals a strong correlation between Voronoi Shelling Order (VSO) and water dynamics. High Voronoi Shelling Orders coincide with residues that were found shielded from bulk water fluctuations in a recent molecular dynamics study. Yet, VSO predicts such "dry" residues without consideration of forcefields or dynamics at a dramatically reduced cost. The interface center is enriched in hydrophobic residues. Yet, this hydrophobic centering is not universal and does not mirror the far stronger geometric bias of water fluxes. The seemingly complex water dynamics at protein interfaces appears thus largely controlled by geometry. Sequence analysis supports the functional relevance of dry residues and residues with high VSO, both of which tend to be more conserved. On closer inspection, the spatial distribution of conservation argues against the arbitrary dissection into core or rim and thus refines previous results. Voronoi Shelling Order reveals clear geometric patterns in protein interface composition, function and dynamics and facilitates the comparative analysis of protein-protein interactions.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Modelos Moleculares , Unión Proteica
19.
Methods Enzymol ; 621: 131-152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31128775

RESUMEN

Protein tyrosine kinases (PTKs) are key signaling molecules and important drug targets. Although the efficient recombinant production of active PTKs is important for both pharmaceutical industry and academic research, most PTKs are still obtained from conventional, expensive and time-consuming insect-cell based expression. Host toxicity, kinase inactivity, insolubility and heterogeneity are among the reasons thought to preclude PTK expression in Escherichia coli. Herein we review these presumed roadblocks and their possible solutions for bacterial expression of PTKs, and give an overview on kinase activity assays. Finally, we report our experiences and observations with the kinases Src, Lyn and FAK as examples to illustrate implementation, effects and pitfalls of E. coli expression and in vitro assaying of PTKs.


Asunto(s)
Proteínas Tirosina Quinasas/genética , Animales , Clonación Molecular/métodos , Pruebas de Enzimas/métodos , Escherichia coli/genética , Expresión Génica , Humanos , Modelos Moleculares , Dominios Proteicos , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
J Integr Bioinform ; 16(2)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199768

RESUMEN

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.1 of SBOL Visual, which builds on the prior SBOL Visual 2.0 standard by expanding diagram syntax to include methods for showing modular structure and mappings between elements of a system, interactions arrows that can split or join (with the glyph at the split or join indicating either superposition or a chemical process), and adding new glyphs for indicating genomic context (e.g., integration into a plasmid or genome) and for stop codons.


Asunto(s)
Modelos Biológicos , Lenguajes de Programación , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA