RESUMEN
Cellulose synthase catalytic subunit genes, CesA, have been discovered in several higher plant species, and it has been shown that the CesA gene family has multiple members. HVR2 fragment of these genes determine the class specificity of the CESA protein and its participation in the primary or secondary cell wall synthesis. The aim of this study was development of specific and degenerated primers to flax CesA gene fragments leading to obtaining the class specific HVR2 region of the gene. Two pairs of specific primers to the certain fragments of CesA-1 and CesA-6 genes and one pair of degenerated primers to HVR2 region of all flax CesA genes were developed basing on comparison of six CesA EST sequences of flax and full cDNA sequences of Arabidopsis, poplar, maize and cotton plants, obtained from GenBank. After amplification of flax cDNA, the bands of expected size were detected (201 and 300 b.p. for the CesA-1 and CesA-6, and 600 b.p. for the HVR2 region of CesA respectively). The developed markers can be used for cloning and sequencing of flax CesA genes, identifying their number in flax genome, tissue and stage specificity.
Asunto(s)
Celulosa/genética , Cartilla de ADN/genética , Lino/genética , Genes de Plantas , Glucosiltransferasas/genética , Arabidopsis/enzimología , Arabidopsis/genética , Secuencia de Bases , Pared Celular/genética , Pared Celular/metabolismo , Celulosa/biosíntesis , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Lino/enzimología , Lino/crecimiento & desarrollo , Datos de Secuencia Molecular , Reacción en Cadena de la PolimerasaRESUMEN
Chromosome C-banding patterns were analyzed in three closely related flax species (Linum usitatissimum L., 2n = 30; L. angustifolium Huds., 2n = 30; and L. bienne Mill., 2n = 30) and their hybrids. In each case, the karyotype included metacentrics, submetacentrics, and one or two satellite chromosomes. Chromosomes of the three flax species were similar in morphology, size (1-3 microns), and C-banding pattern and slightly differed in size of heterochromatic regions. In all accessions, a large major site of ribosomal genes was revealed by hybridization in the pericentric region of a large metacentric. A minor 45S rDNA site was observed on a small chromosome in L. usitatissimum and L. bienne and on a medium-sized chromosome in L. angustifolium. Upon silver staining, a nucleolus-organizing region (NOR) was detected on a large chromosome in all species. In L. angustifolium, an Ag-NOR band was sometimes seen on a medium-sized chromosome. In the karyotypes of interspecific hybrids, silver-stained rDNA loci were observed on satellite chromosomes of both parental species. RAPD analysis with 22 primers revealed a high similarity of the three species. The greatest difference was observed between L. angustifolium and the other two species. The RAPD patterns of L. bienne and L. usitatissimum differed in fewer fragments. A dendrogram of genetic similarity was constructed for the three flax species on the basis of their RAPD patterns. Genome analysis with chromosome and molecular markers showed that L. bienne must be considered as a subspecies of L. usitatissimum rather than a separate species. The three species were assumed to originate from a common ancestor, L. angustifolium being closest to it.