Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nature ; 580(7801): 65-70, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238945

RESUMEN

The defining characteristic1,2 of Cooper pairs with finite centre-of-mass momentum is a spatially modulating superconducting energy gap Δ(r), where r is a position. Recently, this concept has been generalized to the pair-density-wave (PDW) state predicted to exist in copper oxides (cuprates)3,4. Although the signature of a cuprate PDW has been detected in Cooper-pair tunnelling5, the distinctive signature in single-electron tunnelling of a periodic Δ(r) modulation has not been observed. Here, using a spectroscopic technique based on scanning tunnelling microscopy, we find strong Δ(r) modulations in the canonical cuprate Bi2Sr2CaCu2O8+δ that have eight-unit-cell periodicity or wavevectors Q ≈ (2π/a0)(1/8, 0) and Q ≈ (2π/a0)(0, 1/8) (where a0 is the distance between neighbouring Cu atoms). Simultaneous imaging of the local density of states N(r, E) (where E is the energy) reveals electronic modulations with wavevectors Q and 2Q, as anticipated when the PDW coexists with superconductivity. Finally, by visualizing the topological defects in these N(r, E) density waves at 2Q, we find them to be concentrated in areas where the PDW spatial phase changes by π, as predicted by the theory of half-vortices in a PDW state6,7. Overall, this is a compelling demonstration, from multiple single-electron signatures, of a PDW state coexisting with superconductivity in Bi2Sr2CaCu2O8+δ.

2.
Proc Natl Acad Sci U S A ; 120(43): e2219491120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37851678

RESUMEN

In conventional superconductors, electron-phonon coupling plays a dominant role in generating superconductivity. In high-temperature cuprate superconductors, the existence of electron coupling with phonons and other boson modes and its role in producing high-temperature superconductivity remain unclear. The evidence of electron-boson coupling mainly comes from angle-resolved photoemission (ARPES) observations of [Formula: see text]70-meV nodal dispersion kink and [Formula: see text]40-meV antinodal kink. However, the reported results are sporadic and the nature of the involved bosons is still under debate. Here we report findings of ubiquitous two coexisting electron-mode couplings in cuprate superconductors. By taking ultrahigh-resolution laser-based ARPES measurements, we found that the electrons are coupled simultaneously with two sharp modes at [Formula: see text]70meV and [Formula: see text]40meV in different superconductors with different dopings, over the entire momentum space and at different temperatures above and below the superconducting transition temperature. These observations favor phonons as the origin of the modes coupled with electrons and the observed electron-mode couplings are unusual because the associated energy scales do not exhibit an obvious energy shift across the superconducting transition. We further find that the well-known "peak-dip-hump" structure, which has long been considered a hallmark of superconductivity, is also omnipresent and consists of "peak-double dip-double hump" finer structures that originate from electron coupling with two sharp modes. These results provide a unified picture for the [Formula: see text]70-meV and [Formula: see text]40-meV energy scales and their evolutions with momentum, doping and temperature. They provide key information to understand the origin of these energy scales and their role in generating anomalous normal state and high-temperature superconductivity.

3.
Nature ; 569(7757): 537-541, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068693

RESUMEN

The discovery of the quantum Hall effect (QHE)1,2 in two-dimensional electronic systems has given topology a central role in condensed matter physics. Although the possibility of generalizing the QHE to three-dimensional (3D) electronic systems3,4 was proposed decades ago, it has not been demonstrated experimentally. Here we report the experimental realization of the 3D QHE in bulk zirconium pentatelluride (ZrTe5) crystals. We perform low-temperature electric-transport measurements on bulk ZrTe5 crystals under a magnetic field and achieve the extreme quantum limit, where only the lowest Landau level is occupied, at relatively low magnetic fields. In this regime, we observe a dissipationless longitudinal resistivity close to zero, accompanied by a well-developed Hall resistivity plateau proportional to half of the Fermi wavelength along the field direction. This response is the signature of the 3D QHE and strongly suggests a Fermi surface instability driven by enhanced interaction effects in the extreme quantum limit. By further increasing the magnetic field, both the longitudinal and Hall resistivity increase considerably and display a metal-insulator transition, which represents another magnetic-field-driven quantum phase transition. Our findings provide experimental evidence of the 3D QHE and a promising platform for further exploration of exotic quantum phases and transitions in 3D systems.

4.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33436408

RESUMEN

Topological superconductivity has been sought in a variety of heterostructure systems, the interest being that a material displaying such a phenomenon could prove to be the ideal platform to support Majorana fermions, which in turn could be the basis for advanced qubit technologies. Recently, the high-Tc family of superconductors, FeTe1-xSex, have been shown to exhibit the property of topological superconductivity and further, evidence has been found for the presence of Majorana fermions. We have studied the interplay of topology, magnetism, and superconductivity in the FeTe1-x Se x family using high-resolution laser-based photoemission. At the bulk superconducting transition, a gap opens at the chemical potential as expected. However, a second gap is observed to open at the Dirac point in the topological surface state. The associated mass acquisition in the topological state points to time-reversal symmetry breaking, probably associated with the formation of ferromagnetism in the surface layer. The presence of intrinsic ferromagnetism combined with strong spin-orbit coupling provides an ideal platform for a range of exotic topological phenomena.

5.
Proc Natl Acad Sci U S A ; 118(51)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916295

RESUMEN

In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.

6.
Nano Lett ; 23(11): 5334-5341, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37205726

RESUMEN

Interest in ZrTe5 has been reinvigorated in recent years owing to its potential for hosting versatile topological electronic states and intriguing experimental discoveries. However, the mechanism of many of its unusual transport behaviors remains controversial: for example, the characteristic peak in the temperature-dependent resistivity and the anomalous Hall effect. Here, through employing a clean dry-transfer fabrication method in an inert environment, we successfully obtain high-quality ZrTe5 thin devices that exhibit clear dual-gate tunability and ambipolar field effects. Such devices allow us to systematically study the resistance peak as well as the Hall effect at various doping densities and temperatures, revealing the contribution from electron-hole asymmetry and multiple-carrier transport. By comparing with theoretical calculations, we suggest a simplified semiclassical two-band model to explain the experimental observations. Our work helps to resolve the longstanding puzzles on ZrTe5 and could potentially pave the way for realizing novel topological states in the two-dimensional limit.

7.
Nano Lett ; 23(10): 4541-4547, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162755

RESUMEN

The controlled manipulation of Abrikosov vortices is essential for both fundamental science and logical applications. However, achieving nanoscale manipulation of vortices while simultaneously measuring the local density of states within them remains challenging. Here, we demonstrate the manipulation of Abrikosov vortices by moving the pinning center, namely one-dimensional wrinkles, on the terminal layers of Fe(Te,Se) and LiFeAs, by utilizing low-temperature scanning tunneling microscopy/spectroscopy (STM/S). The wrinkles trap the Abrikosov vortices induced by the external magnetic field. In some of the wrinkle-pinned vortices, robust zero-bias conductance peaks are observed. We tailor the wrinkle into short pieces and manipulate the wrinkles by using an STM tip. Strikingly, we demonstrate that the pinned vortices move together with these wrinkles even at high magnetic field up to 6 T. Our results provide a universal and effective routine for manipulating wrinkle-pinned vortices and simultaneously measuring the local density of states on the iron-based superconductor surfaces.

8.
Phys Rev Lett ; 130(4): 046702, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36763427

RESUMEN

Recently, evidence has emerged in the topological superconductor Fe-chalcogenide FeTe_{1-x}Se_{x} for time-reversal symmetry breaking (TRSB), the nature of which has strong implications on the Majorana zero modes (MZM) discovered in this system. It remains unclear, however, whether the TRSB resides in the topological surface state (TSS) or in the bulk, and whether it is due to an unconventional TRSB superconducting order parameter or an intertwined order. Here, by performing in superconducting FeTe_{1-x}Se_{x} crystals both surface-magneto-optic-Kerr effect measurements using a Sagnac interferometer and bulk magnetic susceptibility measurements, we pinpoint the TRSB to the TSS, where we also detect a Dirac gap. Further, we observe surface TRSB in nonsuperconducting FeTe_{1-x}Se_{x} of nominally identical composition, indicating that TRSB arises from an intertwined surface ferromagnetic (FM) order. The observed surface FM bears striking similarities to the two-dimensional (2D) FM found in 2D van der Waals crystals, and is highly sensitive to the exact chemical composition, thereby providing a means for optimizing the conditions for Majorana particles that are useful for robust quantum computing.

9.
Phys Rev Lett ; 130(15): 156201, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37115873

RESUMEN

Scattering processes in quantum materials emerge as resonances in electronic transport, including confined modes, Andreev states, and Yu-Shiba-Rusinov states. However, in most instances, these resonances are driven by a single scattering mechanism. Here, we show the appearance of resonances due to the combination of two simultaneous scattering mechanisms, one from superconductivity and the other from graphene p-n junctions. These resonances stem from Andreev reflection and Klein tunneling that occur at two different interfaces of a hole-doped region of graphene formed at the boundary with superconducting graphene due to proximity effects from Bi_{2}Sr_{2}Ca_{1}Cu_{2}O_{8+δ}. The resonances persist with gating from p^{+}-p and p-n configurations. The suppression of the oscillation amplitude above the bias energy which is comparable to the induced superconducting gap indicates the contribution from Andreev reflection. Our experimental measurements are supported by quantum transport calculations in such interfaces, leading to analogous resonances. Our results put forward a hybrid scattering mechanism in graphene-high-temperature superconductor heterojunctions of potential impact for graphene-based Josephson junctions.

10.
Nat Mater ; 20(9): 1221-1227, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33888904

RESUMEN

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe0.55Se0.45. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe1+yTe1-xSex. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe0.55Se0.45 is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.

11.
Nano Lett ; 21(14): 5998-6004, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34251198

RESUMEN

Topological matter plays a central role in today's condensed matter research. Zirconium pentatelluride (ZrTe5) has attracted attention as a Dirac semimetal at the boundary of weak and strong topological insulators (TI). Few-layer ZrTe5 is anticipated to exhibit the quantum spin Hall effect due to topological states inside the band gap, but sample degradation inflicted by ambient conditions and processing has so far hampered the fabrication of high quality devices. The quantum Hall effect (QHE), serving as the litmus test for 2D systems to be considered of high quality, has not been observed so far. Only a 3D variant on bulk was reported. Here, we succeeded in preserving the intrinsic properties of thin films lifting the carrier mobility to ∼3500 cm2 V-1 s-1, sufficient to observe the integer QHE and a bulk band gap related zero-energy state. The magneto-transport results offer evidence for the gapless topological states within this gap.

12.
Nano Lett ; 21(24): 10469-10477, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881903

RESUMEN

Stacking two-dimensional van der Waals (vdW) materials rotated with respect to each other show versatility for studying exotic quantum phenomena. In particular, anisotropic layered materials have great potential for such twistronics applications, providing high tunability. Here, we report anisotropic superconducting order parameters in twisted Bi2Sr2CaCu2O8+x (Bi-2212) vdW junctions with an atomically clean vdW interface, achieved using the microcleave-and-stack technique. The vdW junctions with twist angles of 0° and 90° showed the maximum Josephson coupling, comparable to that of intrinsic Josephson junctions. As the twist angle approaches 45°, Josephson coupling is suppressed, and eventually disappears at 45°. The observed twist angle dependence of the Josephson coupling can be explained quantitatively by theoretical calculation with the d-wave superconducting order parameter of Bi-2212 and finite tunneling incoherence of the junction. Our results revealed the anisotropic nature of Bi-2212 and provided a novel fabrication technique for vdW-based twistronics platforms compatible with air-sensitive vdW materials.

13.
Nano Lett ; 21(17): 7277-7283, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34415171

RESUMEN

The interplay among topology, superconductivity, and magnetism promises to bring a plethora of exotic and unintuitive behaviors in emergent quantum materials. The family of Fe-chalcogenide superconductors FeTexSe1-x are directly relevant in this context due to their intrinsic topological band structure, high-temperature superconductivity, and unconventional pairing symmetry. Despite enormous promise and expectation, the local magnetic properties of FeTexSe1-x remain largely unexplored, which prevents a comprehensive understanding of their underlying material properties. Exploiting nitrogen vacancy (NV) centers in diamond, here we report nanoscale quantum sensing and imaging of magnetic flux generated by exfoliated FeTexSe1-x flakes, demonstrating strong correlation between superconductivity and ferromagnetism in FeTexSe1-x. The coexistence of superconductivity and ferromagnetism in an established topological superconductor opens up new opportunities for exploring exotic spin and charge transport phenomena in quantum materials. The demonstrated coupling between NV centers and FeTexSe1-x may also find applications in developing hybrid architectures for next-generation, solid-state-based quantum information technologies.

14.
Nano Lett ; 21(1): 308-316, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33320013

RESUMEN

Hyperbolic Cooper-pair polaritons (HCP) in cuprate superconductors are of fundamental interest due to their potential for providing insights into the nature of unconventional superconductivity. Here, we critically assess an experimental approach using near-field imaging to probe HCP in Bi2Sr2CaCu2O8+x (Bi-2212) in the presence of graphene surface plasmon polaritons (SPP). Our simulations show that inherently weak HCP features in the near-field can be strongly enhanced when coupled to graphene SPP in layered graphene/hexagonal boron nitride (hBN)/Bi-2212 heterostructures. This enhancement arises from our multilayered structures effectively acting as plasmonic cavities capable of altering collective modes of a layered superconductor by modifying its electromagnetic environment. The degree of enhancement can be selectively controlled by tuning the insulating spacer thickness with atomic precision. Finally, we verify the expected renormalization of room-temperature graphene SPP using near-field infrared imaging. Our modeling, augmented with data, attests to the validity of our approach for probing HCP modes in cuprate superconductors.

15.
Phys Rev Lett ; 126(7): 076802, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666492

RESUMEN

Yu-Shiba-Rusinov (YSR) bound states appear when a magnetic atom interacts with a superconductor. Here, we report on spin-resolved spectroscopic studies of YSR states related with Fe atoms deposited on the surface of the topological superconductor FeTe_{0.55}Se_{0.45} using a spin-polarized scanning tunneling microscope. We clearly identify the spin signature of pairs of YSR bound states at finite energies within the superconducting gap having opposite spin polarization as theoretically predicted. In addition, we also observe zero-energy bound states for some of the adsorbed Fe atoms. In this case, a spin signature is found to be absent indicating the absence of Majorana bound states associated with Fe adatoms on FeTe_{0.55}Se_{0.45}.

16.
Nano Lett ; 20(11): 8001-8007, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32985892

RESUMEN

The quantum anomalous Hall (QAH) effect appears in ferromagnetic topological insulators (FMTIs) when a Dirac mass gap opens in the spectrum of the topological surface states (SSs). Unaccountably, although the mean mass gap can exceed 28 meV (or ∼320 K), the QAH effect is frequently only detectable at temperatures below 1 K. Using atomic-resolution Landau level spectroscopic imaging, we compare the electronic structure of the archetypal FMTI Cr0.08(Bi0.1Sb0.9)1.92Te3 to that of its nonmagnetic parent (Bi0.1Sb0.9)2Te3, to explore the cause. In (Bi0.1Sb0.9)2Te3, we find spatially random variations of the Dirac energy. Statistically equivalent Dirac energy variations are detected in Cr0.08(Bi0.1Sb0.9)1.92Te3 with concurrent but uncorrelated Dirac mass gap disorder. These two classes of SS electronic disorder conspire to drastically suppress the minimum mass gap to below 100 µeV for nanoscale regions separated by <1 µm. This fundamentally limits the fully quantized anomalous Hall effect in Sb2Te3-based FMTI materials to very low temperatures.

17.
Nat Mater ; 18(2): 103-107, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559411

RESUMEN

High-temperature (high-Tc) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases1. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state1-3, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.

18.
Nano Lett ; 18(9): 5660-5665, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30111116

RESUMEN

We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi2Sr2CaCu2O8+δ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the solid ion conductor (SIC) engenders a SIT in BSCCO due to the modulation of carrier density by intercalated lithium ions. Scaling analysis indicates that the SIT follows the theoretical description of a two-dimensional quantum phase transition (2D-QPT). We further carry out tunneling spectroscopy in graphite(G)/BSCCO heterojunctions. We observe V-shaped gaps in the critical regime of the SIT. The density of states in BSCCO gets symmetrically suppressed by further going into the insulating regime. Our technique of combining solid state gating with tunneling spectroscopy can be easily applied to the study of other two-dimensional materials.

19.
Phys Rev Lett ; 120(11): 117001, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601772

RESUMEN

We investigate the terahertz (THz)-pulse-driven nonlinear response in the d-wave cuprate superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x} (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below T_{c}. The corresponding third-order nonlinear effect exhibits both A_{1g} and B_{1g} symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A_{1g} component is associated with the Higgs mode of the d-wave order parameter.

20.
Proc Natl Acad Sci U S A ; 112(5): 1316-21, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605947

RESUMEN

To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA