Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(35): e202406262, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38787604

RESUMEN

Single-atom catalysts (SACs) have recently become highly attractive for selective hydrogenation reactions owing to their remarkably high selectivity. However, compared to their nanoparticle counterparts, atomically dispersed metal atoms in SACs often show inferior activity and are prone to aggregate under reaction conditions. Here, by theoretical calculations, we show that tuning the local electronic structures of metal anchor sites on g-C3N4 by doping B atoms (BCN) with relatively lower electronegativity allows achieving zero-valence Pd SACs with reinforced metal-support orbital hybridizations for high stability and upshifted Pd 4d orbitals for high activity in H2 activation. The precise synthesis of Pd SACs on BCN supports with varied B contents substantiated the theoretical prediction. A zero-valence Pd1/BCN SAC was achieved on a BCN support with a relatively low B content. It exhibited much higher stability in a H2 reducing environment, and more strikingly, a hydrogenation activity, approximately 10 and 34 times greater than those high-valence Pd1/g-C3N4 and Pd1/BCN with a high B content, respectively.

2.
J Neuroinflammation ; 20(1): 110, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158916

RESUMEN

BACKGROUND: Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) protein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and associated neuroinflammation in the central nervous system (CNS). METHODS: Depression-like behaviors and olfactory function were observed in both female and male mice receiving intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial activation, blood-brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in mice. RESULTS: Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1ß, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregulated in both cortex and hippocampus, whereas IL-1ß, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein. CONCLUSIONS: Our study demonstrates that envelope protein could directly induce depression-like behaviors, dysosmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 patients.


Asunto(s)
COVID-19 , Trastornos del Olfato , Femenino , Masculino , Animales , Ratones , Depresión/etiología , Interleucina-6 , Enfermedades Neuroinflamatorias , SARS-CoV-2 , Receptor Toll-Like 2 , Trastornos del Olfato/etiología
3.
J Orthop Traumatol ; 22(1): 37, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34536150

RESUMEN

BACKGROUND: Diagnosing chronic periprosthetic joint infection (PJI) is challenging. No single biomarker can accurately recognize PJI preoperatively in a timely manner. Therefore, the aim of the present study was to investigate the usefulness of the serum neutrophil-to-lymphocyte ratio (NLR) in aiding the diagnosis of chronic PJI. MATERIALS AND METHODS: We retrospectively evaluated the medical records of 158 patients who had undergone revision arthroplasty (104 with aseptic mechanic failure and 54 with chronic PJI) from July 2011 to July 2020. Univariate analysis followed by multivariate logistic regression was applied to compare NLR, C-reactive protein (CRP), and erythrocyte sedimentation ratio (ESR) between the two groups. The receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of NLR alone and in combination with CRP and ESR. RESULTS: NLR, CRP, and ESR were significantly higher in patients with chronic PJI than in the aseptic revision group (p < 0.05). ROC curve analysis revealed that NLR had a sensitivity of 57.41% and a specificity of 77.88% with an optimal threshold of 2.56. The optimal threshold for CRP and ESR was 7.00 mg/L (sensitivity 62.50% and specificity 83.12%) and 43 mm/h (sensitivity 59.38% and specificity 80.52%), respectively. The combined diagnostic value of NLR with CRP and ESR was shown to have no additional diagnostic value in predicting chronic PJI. CONCLUSION: Compared with traditional inflammatory biomarkers (ESR and CRP), the value of serum NLR alone or combined with CRP and ESR for diagnosing chronic PJI is limited. LEVEL OF EVIDENCE: Level 3.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Infecciones Relacionadas con Prótesis , Biomarcadores , Humanos , Linfocitos , Neutrófilos , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/cirugía , Estudios Retrospectivos , Sensibilidad y Especificidad
4.
Ann Rheum Dis ; 79(3): 408-417, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31871141

RESUMEN

OBJECTIVES: The heterogeneity of meniscus cells and the mechanism of meniscus degeneration is not well understood. Here, single-cell RNA sequencing (scRNA-seq) was used to identify various meniscus cell subsets and investigate the mechanism of meniscus degeneration. METHODS: scRNA-seq was used to identify cell subsets and their gene signatures in healthy human and degenerated meniscus cells to determine their differentiation relationships and characterise the diversity within specific cell types. Colony-forming, multi-differentiation assays and a mice meniscus injury model were used to identify meniscus progenitor cells. We investigated the role of degenerated meniscus progenitor (DegP) cell clusters during meniscus degeneration using computational analysis and experimental verification. RESULTS: We identified seven clusters in healthy human meniscus, including five empirically defined populations and two novel populations. Pseudotime analysis showed endothelial cells and fibrochondrocyte progenitors (FCP) existed at the pseudospace trajectory start. Melanoma cell adhesion molecule ((MCAM)/CD146) was highly expressed in two clusters. CD146+ meniscus cells differentiated into osteoblasts and adipocytes and formed colonies. We identified changes in the proportions of degenerated meniscus cell clusters and found a cluster specific to degenerative meniscus with progenitor cell characteristics. The reconstruction of four progenitor cell clusters indicated that FCP differentiation into DegP was an aberrant process. Interleukin 1ß stimulation in healthy human meniscus cells increased CD318+ cells, while TGFß1 attenuated the increase in CD318+ cells in degenerated meniscus cells. CONCLUSIONS: The identification of meniscus progenitor cells provided new insights into cell-based meniscus tissue engineering, demonstrating a novel mechanism of meniscus degeneration, which contributes to the development of a novel therapeutic strategy.


Asunto(s)
Diferenciación Celular/genética , Menisco/citología , Células Madre/metabolismo , Animales , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Humanos , Ratones , RNA-Seq , Análisis de Secuencia de ARN , Análisis de la Célula Individual
5.
Pharmacology ; 104(3-4): 187-195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31344704

RESUMEN

BACKGROUND/AIMS: Tangeretin (TAN), a major phytochemical in tangerine peels and an important Chinese herb, has multiple biological properties, especially antioxidative and anti-inflammatory effects. However, the mechanisms remain unclear. Based on these findings, the aim of the present study was to assess the antioxidant and anti-inflammatory properties of TAN in bovine type II collagen-induced arthritis rats. METHODS: TAN (50 mg/kg) was given orally once daily for 14 days. The effects of treatment were evaluated by biochemical assay (articular elastase, myeloperoxidase, end products of lipid peroxidation [MDA], antioxidant enzyme, such as superoxide dismutase, catalase, glutathione), nitric oxide, and inflammatory cytokines (interleukin-1ß [IL-1ß], -IL-10, tumor necrosis factor-alpha [TNF-α], interferon-γ [IFN-γ], and prostaglandin E2 [PGE2]). The protective effects of TAN against rheumatoid arthritis (RA) were evident from the decrease in arthritis scoring. Furthermore, the Nrf-2 signaling pathway was assessed to illustrate the molecular mechanism. RESULTS: TAN had therapeutic effects on RA by decreasing the oxidative stress damage and regulating inflammatory cytokine expression, including suppression of the accumulation of MDA products, decreasing the IL-1ß, TNF-α, IFN-γ, and PGE2 levels, enhancing the IL-10 and the activity of antioxidant enzymes, which was through upregulating Nrf-2 signaling pathway. CONCLUSION: TAN might have potential as a therapeutic agent for the treatment of RA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Colágeno/farmacología , Flavonas/farmacología , Inflamación/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Catalasa , Citocinas/metabolismo , Dinoprostona/metabolismo , Glutatión/metabolismo , Inflamación/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Articulaciones/efectos de los fármacos , Articulaciones/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
6.
Drug Dev Res ; 80(5): 637-645, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31032997

RESUMEN

Osteoarthritis (OA) is one of the most chronic degenerative arthritic diseases, which gradually results in chondrocyte changes, articular cartilage degeneration, subchondral bone sclerosis, joint pain, swelling, and dysfunction. Berberine (BBR) has various confirmed biological activities, such as anti-inflammatory and antioxidant activities. However, the effect of BBR on the production of inflammation-associated proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, metalloproteinases (MMPs), Collagen II, TNF-α, and IL-6 via the MAPK (mitogen-activated protein kinases) pathway in IL-1ß-stimulated rat chondrocytes, has not yet been studied. Thus, the purpose of this study was to evaluate whether BBR would decrease the production of inflammation-associated proteins through the MAPK signal pathway. Rat chondrocytes were cultured and pretreated with BBR at different concentrations (0, 25, 50, and 100 µM) and then stimulated with or without IL-1ß (10 ng/mL). The mRNA expression of iNOS, COX-2, MMP-3, MMP-13, TNF-α, and IL-6 was measured by real-time polymerase chain reaction (RT-PCR), and the protein expression of iNOS, COX-2, Collagen II, MMP-3,MMP-13, and MAPKs were measured by Western blotting. The results showed that the expression of iNOS, COX-2, MMP-3, MMP-13, TNF-α, and IL-6 increased in the IL-1ß-treated group and BBR showed an ability to inhibit the elevated expression under the pretreatment. Furthermore, the IL-1ß-induced downregulation of Collagen II could be ameliorated by BBR. Moreover, the expression of MAPKs was significantly decreased by BBR. These results demonstrated that BBR had the anti-catabolic and anti-inflammation abilities that were through the MAPKs in IL-1ß-induced rat chondrocytes. These findings may provide a novel therapeutic choice for treatment of OA using BBR.


Asunto(s)
Antiinflamatorios/farmacología , Berberina/farmacología , Condrocitos/citología , Interleucina-1beta/efectos adversos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Interleucina-6/genética , Interleucina-6/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Arthroplasty ; 30(12): 2219-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26164560

RESUMEN

We examined the correlation between acetabular prostheses and sagittal anatomical parameters of the pelvis for the preoperative evaluation of total hip arthroplasty in 29 patients with ankylosing spondylitis between April 2004 and November 2011. No implant dislocation or subsidence was observed at 4.18 years. The relationship between sagittal parameters conformed to the equation Pelvic incidence (PI)=Pelvic tilt (PT)+Sacral slope (SS). Better outcomes were achieved in the SS>PT group, postoperative function was positively correlated with SS/PI. Functional abduction and anteversion were positively correlated with PT but negatively correlated with SS. Due to the compensatory changes in the pelvis and spine of patients with AS, the preoperative assessment of sagittal parameters plays pivotal roles in placing acetabular prostheses in optimal positions and preventing postoperative impingement and dislocation.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Pelvis/anatomía & histología , Espondilitis Anquilosante/cirugía , Adulto , Estudios de Seguimiento , Prótesis de Cadera , Humanos , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Estudios Retrospectivos , Sacro/anatomía & histología , Adulto Joven
11.
Adv Sci (Weinh) ; 11(2): e2305900, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984865

RESUMEN

Electron-phonon coupling (EPC) and phonon-phonon scattering (PPS) are at the core of the microscopic physics mechanisms of vast quantum materials. However, to date, there are rarely reports that these two processes can be spatially separated, although they are usually temporally detached with different characteristic lifetimes. Here, by employing ultrafast spectroscopy to investigate the photo-carrier ultrafast dynamics in a LaCoO3 thin film on a (100) SrTiO3 substrate, intriguing evidence is found that the two interactions are indeed spatially separated. The EPC mainly occurs in the thin film, whereas PPS is largely in the substrate, especially at the several atomic layers near the interface. Across-interface penetration and decay of optical phonons into acoustic phonons thus naturally occur. An EPC strength λEg  = 0.30 is also obtained and an acoustic phonon mode at 45.3 GHz is observed. The finding lays out a cornerstone for future quantum nano device designs.

12.
Gene ; 893: 147944, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38381510

RESUMEN

Tannic acid (TA), a significant plant secondary metabolite, is contained in the daily food of Brandt's voles. Its adverse effect on gut function has been shown in earlier research, but the underlying molecular mechanisms remain uncertain. In this study, male Brandt's vole (13 weeks old) were divided into two groups and given 0 (control) or 1,200 (TA-treated) mg•kg-1 TA for 18 days. Then RNA sequencing was used to conduct a thorough transcriptome analysis on the duodenum, jejunum, and ileum of Brandt's voles. Results showed that TA significantly increased serum total cholesterol concentration (P < 0.05) and decreased the nutrient digestibility (P < 0.05) of Brandt's voles. Furthermore, there were 174 differentially expressed genes (DEGs) in the duodenum, 96 DEGs in the jejunum, and 88 DEGs in the ileum between the control and TA-treated groups. Enrichment analysis revealed that many genes associated with bile secretion, fat digestion and absorption, innate immune response, and tight junction such as ABCG2, ABCG8, PEAK1, and IFR2, etc. were altered after TA treatment, which were verified by quantitative real-time PCR. These findings suggested that TA can change the expression of intestinal genes, thereby, altering nutrition metabolism and immunological function, eventually hindering the growth of Brandt's voles. The results of this study provide a theoretical basis for explaining how TA affects the gut function of Brandt's voles at the molecular level.


Asunto(s)
Arvicolinae , Perfilación de la Expresión Génica , Polifenoles , Animales , RNA-Seq , Análisis de Secuencia de ARN , Arvicolinae/genética
13.
Food Chem ; 450: 139209, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615529

RESUMEN

Adenosine triphosphate (ATP) plays a vital role in physiological processes and is an essential indicator of microbial content in food. Herein, a new sensitive, rapid and water-soluble probe for ATP detection was developed. Rhodamine B and pentaethylenehexamine were employed to design and synthesise the probe rhodamine-pentaethylenehexamine (RP) for selective ATP detection. The synthesised probe RP was characterized using Fourier transform infrared, NMR and dynamic light scattering size distributions. Upon the addition of ATP, the probe exhibited a distinct change in fluorescence intensity, with fluorescence emission at 580 nm. A linear relationship was observed between fluorescence intensity and ATP concentrations at 0-50 µmol/L, with a limit of detection of 10.97 × 10-9 mol/L. The results of the zeta potential and molecular dynamics simulation demonstrated that the detection mechanism of the probe RP is associated with the electrostatic adsorption interaction between the multi-positively charged sites of RP and the negatively charged triphosphate structure of ATP. Our study provides new insights into improving charge site identification in small molecule detection. Furthermore, the successful detection of ATP on meat surfaces indicates that RP has the potential to assess meat freshness.


Asunto(s)
Adenosina Trifosfato , Colorantes Fluorescentes , Carne , Rodaminas , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Rodaminas/química , Colorantes Fluorescentes/química , Animales , Carne/análisis , Espectrometría de Fluorescencia/métodos
14.
Food Res Int ; 187: 114424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763675

RESUMEN

This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 âˆ¼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 âˆ¼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 âˆ¼ 30.65 µmol/g), but lower total sulfhydryl (73.37 âˆ¼ 88.94 µmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to ß-sheets and random coils were observed in FT-3 âˆ¼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.


Asunto(s)
Culinaria , Patos , Congelación , Cromatografía de Gases y Espectrometría de Masas , Gusto , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/análisis , Manipulación de Alimentos/métodos , Oxidación-Reducción , Calidad de los Alimentos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
15.
Food Chem ; 459: 140149, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39002337

RESUMEN

Alterations in microbiotas and endogenous enzymes have been implicated in meat deterioration. However, the factors that mediate the interactions between meat quality and microbiome profile were inadequately investigated. In this study, we collected pork samples throughout the refrigeration period and employed metaproteomics to characterize both the pork and microbial proteins. Our findings demonstrated that pork proteins associated with the catabolic process are upregulated during storage compared to the initial stage. Pseudomonas, Clostridium, Goodfellowiella, and Gonapodya contribute to the spoilage process. Notably, we observed an elevated abundance of microbial proteins related to glycolytic enzymes in refrigerated pork, identifying numerous proteins linked to biogenic amine production, thus highlighting their essential role in microbial decay. Further, we reveal that many of these microbial proteins from Pseudomonas are ribosomal proteins, promoting enzyme synthesis by enhancing transcription and translation. This study provides intrinsic insights into the underlying mechanisms by which microorganisms contribute to meat spoilage.


Asunto(s)
Bacterias , Proteínas Bacterianas , Almacenamiento de Alimentos , Proteómica , Refrigeración , Animales , Porcinos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Microbiota
16.
Food Chem ; 460(Pt 1): 140308, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024809

RESUMEN

Effect of part differences on metabolite molecule alterations in refrigerated pork was investigated. A metabolomics methodology combined with chemometric analysis was successfully established to identify key compounds and their conversion pathways, including precursors and volatile metabolites, in the Longissimus lumborum as well as the breast and flank stored for 11 days. In total, 12 discriminative precursors were identified using the Short Time-series Expression Miner. In tandem with Random Forest and ANOVA analyses, nine volatile metabolites were identified as key compounds that could be attributed to differences in pork sections. Bidirectional orthogonal partial least squares analysis revealed a potential correlation between these key metabolites and discriminative precursors. Metabolic pathway enrichment analysis demonstrated that the primary metabolic process affected by variations in pork sections is linoleic acid metabolism, which participates in the metabolism of cysteine and glutamic acid to produce methoxy-phenyl-oxime. This study provides valuable insights into the identification of differential metabolites.


Asunto(s)
Metabolómica , Animales , Porcinos , Refrigeración , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Carne/análisis , Almacenamiento de Alimentos , Redes y Vías Metabólicas
17.
Natl Sci Rev ; 11(10): nwad296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39301067

RESUMEN

Spin texture in k-space is a consequence of spin splitting due to strong spin-orbit coupling and inversion symmetry breaking. It underlies fertile spin transport phenomena and is of crucial importance for spintronics. Here, we observe the spin texture in k-space of nominally centrosymmetric SrIrO3 grown on NdGaO3 (110) substrates, using non-linear magnetotransport measurements. We demonstrate that the spin texture is not only induced by the interface, which inherently breaks the inversion symmetry in strong spin-orbit coupled SrIrO3 films, but also originates from the film bulk. Structural analysis reveals that thicker SrIrO3 films exhibit a strain gradient, which could be considered as a continuous change in the lattice constant across different layers and breaks the inversion symmetry throughout the entire SrIrO3 films, giving rise to the spin texture in k-space. First-principles calculations reveal that the strain gradient creates large spin-splitting bands, inducing the spin texture with anisotropy, which is consistent with our experimental observations. Our results offer an efficient method for inducing the spin textures in k-space.

18.
Food Chem X ; 22: 101364, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623515

RESUMEN

It is important to develop rapid, accurate, and portable technologies for detecting the freshness of chilled meat to meet the current demands of meat industry. This report introduces freshness indicators for monitoring the freshness changes of chilled meat, and systematically analyzes the current status of existing detection technologies which focus on the feasibility of using nanozyme for meat freshness sensing detection. Furthermore, it examines the limitations and foresees the future development trends of utilizing current nanozyme sensing systems in evaluating chilled meat freshness. Harmful chemicals are produced by food spoilage degradation, including biogenic amines, volatile amines, hydrogen sulfide, and xanthine, which have become new freshness indicators to evaluate the freshness of chilled meat. The recognition mechanisms are clarified based on the special chemical reaction with nanozyme or directly inducting the enzyme-like catalytic activity of nanozyme.

19.
Orthop Surg ; 16(3): 577-584, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238252

RESUMEN

OBJECTIVE: Irrigation is a conventional treatment for acute and chronic periprosthetic joint infections (PJI). However, there has been no unified standard for irrigation during surgery for PJI in the past, and the efficacy is uncertain. The purpose of this study is to create a new irrigation protocol to enhance the infection control rate and reduce the postoperative recurrence rate of PJI patients. METHODS: We conducted a single-institution retrospective review with a total of 56 patients who underwent revision total hip or knee arthroplasties due to PJI from January 2011 to January 2022. Conventional irrigation (CI) was used in 32 cases, and standard operating procedure of irrigation (SOPI) was used in 24. The CI protocol carries out an empirical irrigation after debridement, which is quite random. Our SOPI protocol clearly stipulates the soaking concentration and time of hydrogen peroxide and povidone-iodine. The irrigation is carried out three times, and tissue samples are taken from multiple parts before and after irrigation, which are sent for microbial culture. The important statistical indicators were the rate of positive microbiological culture and postoperative recurrence rate with an average follow-up of 24 average months. RESULTS: The drainage volume was lower in the SOPI group than in the CI group on postoperative day 3 (p < 0.01) and 7 (p = 0.016). In addition, the percentage of positive microbiological cultures after the third irrigation was less than that before (p < 0.01) and after (p < 0.01) the first irrigation. The most common causative organism was Staphylococcus aureus, which was detected in 25.0% and 12.5% of the SOPI and CI groups, respectively. The failure rate at the final follow-up was 8.3% and 31.3% (p = 0.039) for the SOPI and CI groups, respectively. CONCLUSION: Compared with the traditional CI method, SOPI standardized the soaking time of hydrogen peroxide and povidone-iodine, increased the frequency of and irrigation, and proved that microorganisms were almost completely removed through the microbial culture of multiple tissues. SOPI has the potential to become a standardized irrigation process worthy of promotion, effectively reducing the postoperative recurrence rate of PJI patients.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Infecciones Relacionadas con Prótesis , Humanos , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Relacionadas con Prótesis/etiología , Resultado del Tratamiento , Povidona Yodada/uso terapéutico , Peróxido de Hidrógeno , Artroplastia de Reemplazo de Rodilla/efectos adversos
20.
Heliyon ; 9(5): e15767, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37180919

RESUMEN

Introduction: Repetitive peripheral magnetic stimulation (rPMS) can stimulate profound neuromuscular tissues painlessly to evoke action potentials in motor axons and induce muscle contraction for treating neurological conditions. It has been increasingly used in stroke rehabilitation as an easy-to-administer approach for therapeutic neuromodulation. Objective: We performed this meta-analysis of randomized controlled trials to systematically evaluate the effects of rPMS for the upper limb in patients with stroke, including motor impairment, muscle spasticity, muscle strength, and activity limitation outcomes. Methods: The meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, EMBASE, Web of Science, Cochrane Library, and Physiotherapy Evidence Database (PEDro) were searched for articles published before June 2022. Forest plots were employed to estimate the pooled results of the included studies, and the I2 statistical analysis was used to identify the source of heterogeneity. Publication bias was examined by Egger's regression tests or visual inspection of the funnel plots. Results: The database searches yielded 1052 potential eligible literature; of them, five randomized controlled trials met the eligible criteria, involving a total of 188 participants. Patients in the rPMS group showed better improvement in motor impairment as measured by the FM-UE (MD: 5.39 [95% CI, 4.26 to 6.52]; P < 0.001; I2 = 0%) compared with the control group. Among the secondary outcomes, no difference was found in the improvement of muscle spasticity (SMD: 0.36 [95% CI, -0.05 to 0.77]; P = 0.08; I2 = 41%). There was a significant difference in the proximal (SMD: 0.58 [95% CI, 0.10 to 1.06]; P = 0.02; I2 = 0%) but not the distal muscle strength (SMD: 1.18 [95% CI, -1.00 to 3.36]; P = 0.29; I2 = 93%). Moreover, the activity limitation outcomes were significantly improved with rPMS intervention (SMD: 0.59 [95% CI, 0.08 to 1.10]; P = 0.02; I2 = 0%). Conclusion: This meta-analysis showed that rPMS might improve upper limb motor impairment, proximal muscle strength, and activity limitation outcomes but not muscle spasticity and distal strength in patients after stroke. Due to the limited number of studies, further randomized clinical trials are still warranted for more accurate interpretation and clinical recommendation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA