Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 110(2): 325-336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181968

RESUMEN

Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.


Asunto(s)
Cucumis sativus , Cucumis sativus/metabolismo , Frutas/metabolismo , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos/metabolismo , Fenotipo , Proteínas de Plantas/metabolismo
2.
J Exp Bot ; 74(15): 4520-4539, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37201922

RESUMEN

In Arabidopsis, the photoreceptors phytochrome B (PhyB) and UV-B resistance 8 (UVR8) mediate light responses that play a major role in regulating photomorphogenic hypocotyl growth, but how they crosstalk to coordinate this process is not well understood. Here we report map-based cloning and functional characterization of an ultraviolet (UV)-B-insensitive, long-hypocotyl mutant, lh1, and a wild-type-like mutant, lh2, in cucumber (Cucumis sativus), which show defective CsPhyB and GA oxidase2 (CsGA20ox-2), a key gibberellic acid (GA) biosynthesis enzyme, respectively. The lh2 mutation was epistatic to lh1 and partly suppressed the long-hypocotyl phenotype in the lh1lh2 double mutant. We identified phytochrome interacting factor (PIF) CsPIF3 as playing a critical role in integrating the red/far-red and UV-B light responses for hypocotyl growth. We show that two modules, CsPhyB-CsPIF3-CsGA20ox-2-DELLA and CsPIF3-auxin response factor 18 (CsARF18), mediate CsPhyB-regulated hypocotyl elongation through GA and auxin pathways, respectively, in which CsPIF3 binds to the G/E-box motifs in the promoters of CsGA20ox-2 and CsARF18 to regulate their expression. We also identified a new physical interaction between CsPIF3 and CsUVR8 mediating CsPhyB-dependent, UV-B-induced hypocotyl growth inhibition. Our work suggests that hypocotyl growth in cucumber involves a complex interplay of multiple photoreceptor- and phytohormone-mediated signaling pathways that show both conservation with and divergence from those in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/metabolismo , Hipocótilo , Cucumis sativus/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Luz , Mutación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
J Integr Plant Biol ; 65(12): 2552-2568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37811725

RESUMEN

Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Temperatura , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Frío
4.
Plant J ; 107(1): 136-148, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866620

RESUMEN

Cucumis metuliferus (African horned cucumber), a wild relative of Cucumis sativus (cucumber) and Cucumis melo (melon), displays high-level resistance to several important plant pathogens (e.g., root-knot nematodes and several viruses). Here, we report a chromosome-level genome assembly for C. metuliferus, with a 316 Mb genome sequence comprising 29 039 genes. Phylogenetic analysis of related species in family Cucurbitaceae indicated that the divergence time between C. metuliferus and melon was 17.8 million years ago. Comparisons between the C. metuliferus and melon genomes revealed large structural variations (inversions and translocations >1 Mb) in eight chromosomes of these two species. Gene family comparison showed that C. metuliferus has the largest number of resistance-related nucleotide-binding site leucine-rich repeat (NBS-LRR) genes in Cucurbitaceae. The loss of NBS-LRR loci caused by large insertions or deletions (indels) and pseudogenization caused by small indels explained the loss of NBS-LRR genes in Cucurbitaceae. Population structure analysis suggested that C. metuliferus originated in Zimbabwe, then spread to other southern African regions where it likely underwent similar domestic selection as melon. This C. metuliferus reference sequence will accelerate the understanding of the molecular evolution of resistance-related genes and enhance cucurbit crop improvement efforts.


Asunto(s)
Cucumis/genética , Genes de Plantas , Genoma de Planta , Filogenia , África , Cromosomas de las Plantas , Cucumis melo/genética , Evolución Molecular , Variación Genética , Genética de Población , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Selección Genética , Zimbabwe
5.
Theor Appl Genet ; 135(9): 3117-3125, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35869997

RESUMEN

KEY MESSAGE: Two candidate genes (Csa6G046210 and Csa6G046240) were identified by fine-mapping gsb-s6.2 for gummy stem blight resistance in cucumber stem. Gummy stem blight (GSB) is a serious fungal disease caused by Didymella bryoniae, that affects cucumber yield and quality worldwide. However, no GSB-resistant genes have been identified in cucumber cultivars. In this study, the wild cucumber accession 'PI 183967' was used as a source of resistance to GSB in adult stems. An F2 population was mapped using resistant line 'LM189' and susceptible line 'LM6' derived from a cross between 'PI 183967' and '931'. By developing InDel and SNP markers, the gsb-s6.2 QTL on Chr. 6 was fine-mapped to a 34 kb interval harboring six genes. Gene Expression analysis after inoculation showed that two candidate genes (Csa6G046210 and Csa6G046240) were induced and differentially expressed between the resistant and susceptible parents, and may be involved in disease defense. Sequence alignment showed that Csa6G046210 encodes a multiple myeloma tumor-associated protein, and it harbored two nonsynonymous SNPs and one InDel in the third and the fourth exons, and two InDels in the TATA-box of the basal promoter region. Csa6G046240 encodes a MYB transcription factor with six variants in the AP2/ERF and MYB motifs in the promoter. These two candidate genes lay the foundation for revealing the mechanism of GSB resistance and may be useful for marker-assisted selection in cucumber disease-resistant breeding.


Asunto(s)
Cucumis sativus , Cucumis sativus/microbiología , Resistencia a la Enfermedad/genética , Estudios de Asociación Genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética
6.
Theor Appl Genet ; 135(8): 2593-2607, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35764690

RESUMEN

KEY MESSAGE: The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.


Asunto(s)
Cucumis sativus , Germinación , Ácido Abscísico/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Giberelinas/metabolismo , Semillas/metabolismo , Temperatura
7.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897836

RESUMEN

Salt stress seriously restricts plant growth and development, affects yield and quality, and thus becomes an urgent problem to be solved in cucumber stress resistance breeding. Mining salt tolerance genes and exploring the molecular mechanism of salt tolerance could accelerate the breeding of cucumber germplasm with excellent salt stress tolerance. In this study, 220 cucumber core accessions were used for Genome-Wide Association Studies (GWAS) and the identification of salt tolerance genes. The salinity injury index that was collected in two years showed significant differences among the core germplasm. A total of seven loci that were associated with salt tolerance in cucumber seedlings were repeatedly detected, which were located on Chr.2 (gST2.1), Chr.3 (gST3.1 and gST3.2), Chr.4 (gST4.1 and gST4.2), Chr.5 (gST5.1), and Chr.6 (gST6.1). Within these loci, 62 genes were analyzed, and 5 candidate genes (CsaV3_2G035120, CsaV3_3G023710, CsaV3_4G033150, CsaV3_5G023530, and CsaV3_6G009810) were predicted via the functional annotation of Arabidopsis homologous genes, haplotype of extreme salt-tolerant accessions, and qRT-PCR. These results provide a guide for further research on salt tolerance genes and molecular mechanisms of cucumber seedlings.


Asunto(s)
Cucumis sativus , Tolerancia a la Sal , Cucumis sativus/genética , Estudio de Asociación del Genoma Completo , Genómica , Fitomejoramiento , Tolerancia a la Sal/genética , Plantones/genética
8.
BMC Plant Biol ; 19(1): 243, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174472

RESUMEN

BACKGROUND: Green flesh color, resulting from the accumulation of chlorophyll, is one of the most important commercial traits for the fruits. The genetic network regulating green flesh formation has been studied in tomato, melon and watermelon. However, little is known about the inheritance and molecular basis of green flesh in cucumber. This study sought to determine the main genomic regions associated with green flesh. Three F2 and two BC1 populations derived from the 9110Gt (cultivated cucumber, green flesh color) and PI183967 (wild cucumber, white flesh color) were used for the green flesh genetic analysis. Two F2 populations of them were further employed to do the map construction and quantitative trait loci (QTL) study. Also, a core cucumber germplasms population was used to do the GWAS analysis. RESULTS: We identified three indexes, flesh color (FC), flesh extract color (FEC) and flesh chlorophyll content (FCC) in three environments. Genetic analysis indicated that green flesh color in 9110Gt is controlled by a major-effect QTL. We developed two genetic maps with 192 and 174 microsatellite markers respectively. Two novel inversions in Chr1 were identified between cultivated and wild cucumbers. The major-effect QTL, qgf5.1, was identified using FC, FEC and FCC index in all different environments used. In addition, the same qgf5.1, together with qgf3.1, was identified via GWAS. Further investigation of two candidate regions using pairwise LD correlations, combined with genetic diversity of qgf5.1 in natural populations, it was found that Csa5G021320 is the candidate gene of qgf5.1. Geographical distribution revealed that green flesh color formation could be due to the high latitude, which has longer day time to produce the photosynthesis and chlorophyll synthesis during cucumber domestication and evolution. CONCLUSIONS: We first reported the cucumber green flesh color is a quantitative trait. We detected two novel loci qgf5.1 and qgf3.1, which regulate the green flesh formation in cucumber. The QTL mapping and GWAS approaches identified several candidate genes for further validation using functional genomics or forward genetics approaches. Findings from the present study provide a new insight into the genetic control of green flesh in cucumber.


Asunto(s)
Cucumis sativus/fisiología , Estudio de Asociación del Genoma Completo , Fenotipo , Pigmentación/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Color , Cucumis sativus/genética , Redes Reguladoras de Genes/fisiología
9.
Theor Appl Genet ; 132(1): 27-40, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30242492

RESUMEN

KEY MESSAGE: Quantitative Trait Loci (QTL) analysis of multiple populations in multiple environments revealed that the fsd6.2 locus, which includes the candidate gene Csgl3, controls high fruit spine density in natural cucumbers. GWAS identified a novel locus fsd6.1, which regulates ultra-high fruit spine density in combination with Csgl3, and evolved during cucumber domestication. Fruit spine density, a domestication trait, largely influences the commercial value of cucumbers. However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, four populations were derived from five materials, which included three with low fruit spine density, one with high fruit spine density, and one with ultra-high fruit spine density. Fruit spine densities were measured in 15 environments over a span of 6 years. The distributions were bimodal suggesting that fruit spine density is controlled by a major-effect QTL. QTL analysis determined that the same major-effect QTL, fsd6.2, is present in four populations. Fine mapping indicated that Csgl3 is the candidate gene at the fsd6.2 locus. Phylogenetic and geographical distribution analyses revealed that Csgl3 originated from China, which has the highest genetic diversity for fruit spine density. One novel minor-effect QTL, fsd6.1, was detected in the HR and HP populations derived from the cross between 65G and 02245. In addition, GWAS identified a novel locus that colocates with fsd6.1. Inspection of a candidate region of about 18 kb in size using pairwise LD correlations, combined with genetic diversity and phylogenetic analysis of fsd6.1 in natural populations, indicated that Csa6G421750 is the candidate gene responsible for ultra-high fruit spine density in cucumber. This study provides new insights into the origin of fruit spine density and the evolution of high/ultra-high fruit spine density during cucumber domestication.


Asunto(s)
Cucumis sativus/genética , Frutas/fisiología , Sitios de Carácter Cuantitativo , China , Mapeo Cromosómico , Domesticación , Frutas/genética , Genes de Plantas , Estudios de Asociación Genética , Ligamiento Genético , Variación Genética , Fenotipo , Filogenia
10.
Theor Appl Genet ; 131(12): 2663-2675, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30244395

RESUMEN

KEY MESSAGE: Candidate genes associated with in vitro regeneration were identified in cucumber. The ability to regenerate shoots or whole plants from differentiated plant tissues is essential for plant transformation. In cucumber (Cucumis sativus L.), regeneration ability varies considerably across accessions, but the genetic mechanism has not yet been demonstrated. In the present study, 148 recombinant inbred lines and a core collection were examined to identify candidate genes involved in cucumber regeneration. Four QTL for cotyledon regeneration that explained 9.7-16.6% of the phenotypic variation in regeneration were identified on cucumber chromosomes 1, 3, and 6. The loci Fcrms1.1 and Fcrms+1.1 were consistently detected in the same genetic interval on two regeneration media. A genome-wide association study revealed 18 SNPs (- log(p) > 5) significantly associated with cotyledon regeneration. Three candidate genes in this region were identified. RT-PCR analyses revealed that Csa1G642540 was significantly more highly expressed in genotypes with high cotyledon regeneration rates than in those with low regeneration. The Csa1G642540 CDS driven by its native promoter was transformed into cucumber line 9110Gt; molecular analyses showed that the T-DNA had integrated into the genomes of 8.6% of regenerated plantlets. The seeds from T0 plants expressing Csa1G642540 were tested for regeneration from cotyledon explants, and the segregate ratio in regeneration frequency is 3:1. The AT3G44110.1, the homologue gene of Csa1G642540 in Arabidopsis, has been reported as PM H+-ATPase activity regulation, integrating flowering signals and enlarging meristem function. These results demonstrate that Csa1G642540 might play an important role in regeneration in cucumber and could serve as a selectable marker for regeneration from cotyledons.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/genética , Genes de Plantas , Regeneración/genética , Cotiledón/crecimiento & desarrollo , Estudios de Asociación Genética , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
11.
Theor Appl Genet ; 131(6): 1239-1252, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29492617

RESUMEN

KEY MESSAGE: Map-based cloning was used to identify the ns gene, which was involved in the formation of cucumber numerous fruit spines together with other genes under regulation by plant hormone signal transduction. The cucumber (Cucumis sativus) fruit spine density has an important impact on the commercial value. However, little is known about the regulatory mechanism for the fruit spine formation. Here, we identified NUMEROUS SPINES (NS), which regulate fruit spine development by modulating the Auxin signaling pathway. We fine-mapped the ns using a 2513 F2 population derived from NCG122 (numerous fruit spines line) and NCG121 (few fruit spines line), and showed that NS encoded auxin transporter-like protein 3. Genetic diversity analysis of the NS gene in natural populations revealed that one SNP and one InDel in the coding region of ns are co-segregated with the fruit spine density. The NS protein sequence was highly conserved among plants, but its regulation of fruit spine development in cucumber seems to be a novel function. Transcriptome profiling indicated that the plant hormone signal transduction-related genes were highly enriched in the up-regulated genes in NCG122 versus NCG121. Moreover, expression pattern analysis of the auxin signal pathway-related genes in NCG122 versus NCG121 showed that upstream genes of the pathway (like ns candidate gene Csa2M264590) are down-regulated, while the downstream genes are up-regulated. Quantitative reverse transcription PCR confirmed the differential expression during the fruit spine development. Therefore, reduced expression of ns may promote the fruit spine formation. Our findings provide a valuable framework for dissecting the regulatory mechanism for the fruit spine development.


Asunto(s)
Cucumis sativus/genética , Perfilación de la Expresión Génica , Genes de Plantas , Ácidos Indolacéticos , Tricomas/crecimiento & desarrollo , Mapeo Cromosómico , Clonación Molecular , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Mutación INDEL , Polimorfismo de Nucleótido Simple
12.
Plant Physiol ; 172(1): 603-18, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457123

RESUMEN

Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement.


Asunto(s)
Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética , Compuestos Orgánicos Volátiles/análisis , Secuencia de Aminoácidos , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Redes y Vías Metabólicas/genética , Estructura Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación
13.
Plant Dis ; 101(7): 1145-1152, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30682960

RESUMEN

Gummy stem blight (GSB), caused by Didymella bryoniae (syn. Stagonosporopsis cucurbitacearum), is an important disease of cucumber (Cucumis sativus L.) worldwide. To better understand the resistance to GSB in cucumber seedlings, a set of 160 F9 recombinant inbred lines (RILs) and a total of 405 pairs of SSR primers were employed to detect quantitative trait loci (QTLs) conferring the resistance. Genetic analysis indicated that the resistance to GSB in PI 183967 seedlings was quantitative and mainly governed by two pairs of major QTLs and multiple minor QTLs. Six QTLs, gsb3.1, gsb3.2, gsb3.3, gsb4.1, gsb5.1, and gsb6.1, for resistance to GSB in cucumber seedlings were detected. The stable locus gsb5.1 on Chr.5 was repeatedly detected in three seasons. Locus gsb5.1 accounted for the highest phenotypic variation, 17.9%, and was flanked by SSR15321 and SSR07711 within the genetic distance of 0.5 cM. There were 102 candidate genes predicted in the region harboring the stable QTL gsb5.1, of which seven genes were related to disease resistance. These results can provide a good base for further study and molecular markers for fine-mapping the major QTL conferring GSB resistance in cucumber.

14.
J Hered ; 107(5): 471-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27317924

RESUMEN

Number of spines on the fruit is an important quality trait in cucumber. The inheritance and identification of molecular markers for fruit spine density gene can provide a basis for breeding and lay the foundation for gene cloning. Cucumber inbred lines NCG-122 with numerous spines and NCG-121 with few spines were used for genetic analysis and gene mapping in this study. Genetic analysis showed that the numerous spines trait in NCG-122 was qualitative, and a single recessive nuclear gene (ns) controlled this trait. The few spines trait was dominant over the numerous spines trait. In the preliminary genetic mapping of the ns gene, 8 SSR markers were found to be linked to ns, which mapped to chromosome 2 (Chr.2) of cucumber. The closest flanking markers SSR22338 and SSR11596 were linked to the ns gene, with genetic distances of 10.2 and 1.7cM, respectively. One-hundred and thirty pairs of new SSR primers and 28 pairs of Indel primers were developed based on sequence information in the preliminary mapping region of ns Fifteen SSR markers and 2 Indel markers were identified to be linked to the ns gene after analysis on the F2 mapping population using the new molecular markers. The 2 closest flanking markers, SSRns-127 and SSR04219, were 0.7 and 2.4 cM from ns, respectively. The physical distance between SSRns-127 and SSR04219 was 266.1kb, containing 27 predicted genes. Csa2G285390 was speculated as the probable candidate gene for numerous spines. The accuracy of the closest linked marker to the ns gene, SSRns-127, for MAS breeding was 95.0%.


Asunto(s)
Mapeo Cromosómico , Cucumis sativus/genética , Frutas/genética , Genes de Plantas , Cruzamiento , Estudios de Asociación Genética , Marcadores Genéticos , Patrón de Herencia , Fenotipo , Carácter Cuantitativo Heredable , Selección Genética
15.
Int J Mol Sci ; 17(10)2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27669214

RESUMEN

Leaf color mutants are common in higher plants that can be used as markers in crop breeding or as an important tool in understanding regulatory mechanisms in chlorophyll biosynthesis and chloroplast development. In virescent leaf mutants, young leaves are yellow in color, which gradually return to normal green when the seedlings grow large. In the present study, we conducted phenotypic characterization and genetic mapping of the cucumber virescent leaf mutant 9110Gt conferred by the v-1 locus. Total chlorophyll and carotenoid content in 9110Gt was reduced by 44% and 21%, respectively, as compared with its wild type parental line 9110G. Electron microscopic investigation revealed fewer chloroplasts per cell and thylakoids per chloroplast in 9110Gt than in 9110G. Fine genetic mapping allowed for the assignment of the v-1 locus to a 50.4 kb genomic DNA region in chromosome 6 with two flanking markers that were 0.14 and 0.16 cM away from v-1, respectively. Multiple lines of evidence supported CsaCNGCs as the only candidate gene for the v-1 locus, which encoded a cyclic-nucleotide-gated ion channel protein. A single nucleotide change in the promoter region of v-1 seemed to be associated with the virescent color change in 9110Gt. Real-time PCR revealed significantly lower expression of CsaCNGCs in the true leaves of 9110Gt than in 9110G. This was the first report that connected the CsaCNGCs gene to virescent leaf color change, which provided a useful tool to establish linkages among virescent leaf color change, chloroplast development, chlorophyll biosynthesis, and the functions of the CsaCNGCs gene.


Asunto(s)
Cucumis sativus/genética , Genes de Plantas , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Mapeo Cromosómico , Cucumis sativus/crecimiento & desarrollo , ADN de Plantas/química , ADN de Plantas/genética , ADN de Plantas/metabolismo , Ligamiento Genético , Sitios Genéticos , Microscopía Electrónica de Transmisión , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
16.
Plant Cell Physiol ; 56(3): 455-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25432971

RESUMEN

Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices.


Asunto(s)
Cucumis sativus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Nitrógeno/deficiencia , Plantones/genética , Análisis de Secuencia de ARN , Antocianinas/biosíntesis , Ácido Ascórbico/metabolismo , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Análisis por Conglomerados , Cucumis sativus/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Genes de Plantas , Nitrógeno/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Plantones/efectos de los fármacos , Factores de Tiempo
17.
Hortic Res ; 11(2): uhad295, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404593

RESUMEN

Powdery mildew (PM) is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars will require a robust understanding of the molecular mechanisms of cucumber resistance against PM. Using a genome-wide association study, we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus resulted in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl, and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.

18.
BMC Plant Biol ; 13: 53, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23531125

RESUMEN

BACKGROUND: Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. RESULTS: From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. CONCLUSIONS: Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome.


Asunto(s)
Mapeo Cromosómico/métodos , Cucumis sativus/genética , Genoma de Planta/genética
19.
J Hered ; 104(1): 134-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23091223

RESUMEN

Bitterness in cucumber fruit and foliage is due to the presence of cucurbitacins. Several genes have been described that control the trait, with bi (bi-1) making fruit and foliage bitter free and Bt (Bt-1) making the fruit highly bitter. Previous studies have reported the inheritance and molecular markers linked to bi-1 or Bt-1, but we were interested in studying the inheritance of fruit bitterness in the progeny of 2 nonbitter fruit inbred lines. The objective was to determine the inheritance of cucumber fruit and foliage bitterness and to locate them on a current linkage map using a recombinant inbred lines (RILs) population derived by crossing 9110Gt and 9930. It was concluded from the inheritance analysis that there were 2 loci controlling fruit bitterness in the population. One locus was in the same position as the location previously identified for bi-1, and another locus was for bi-3. Using a simple sequence repeat (SSR) linkage map, 2 loci for fruit bitterness in this RILs population were mapped. The locus of bi-1 was located at the region between SSR0004 and SSR02309 within the genetic distance of 5.2 cM on chromosome 6. The locus of bi-3 was placed in the region of SSR00116-SSR05321 within the genetic distance of 6.3 cM on chromosome 5. The physical distances for the regions of bi-1 and bi-3 were 11,430.94 Kb with 160 predicted genes and 1528.23 Kb with 198 predicted genes, respectively. Among 160 predicted genes for bi-1, there is a terpene synthase gene named Csa008595, which was speculated as the candidate gene of bi-1.


Asunto(s)
Cucumis sativus/genética , Cucurbitacinas/genética , Frutas/genética , Hojas de la Planta/genética , Transferasas Alquil y Aril/genética , Mapeo Cromosómico , Biología Computacional , Cruzamientos Genéticos , Cucumis sativus/química , Cucurbitacinas/análisis , Cartilla de ADN/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Escala de Lod , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Sitios de Carácter Cuantitativo/genética
20.
Front Plant Sci ; 14: 1116214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235012

RESUMEN

Low temperatures (LTs) negatively affect the percentage and rate of cucumber (Cucumis sativus L.) seed germination, which has deleterious effects on yield. Here, a genome-wide association study (GWAS) was used to identify the genetic loci underlying low temperature germination (LTG) in 151 cucumber accessions that represented seven diverse ecotypes. Over two years, phenotypic data for LTG i.e., relative germination rate (RGR), relative germination energy (RGE), relative germination index (RGI) and relative radical length (RRL), were collected in two environments, and 17 of the 151 accessions were found to be highly cold tolerant using cluster analysis. A total of 1,522,847 significantly associated single-nucleotide polymorphism (SNP) were identified, and seven loci associated with LTG, on four chromosomes, were detected: gLTG1.1, gLTG1.2, gLTG1.3, gLTG4.1, gLTG5.1, gLTG5.2, and gLTG6.1 after resequencing of the accessions. Of the seven loci, three, i.e., gLTG1.2, gLTG4.1, and gLTG5.2, showed strong signals that were consistent over two years using the four germination indices, and are thus strong and stable for LTG. Eight candidate genes associated with abiotic stress were identified, and three of them were potentially causal to LTG: CsaV3_1G044080 (a pentatricopeptide repeat-containing protein) for gLTG1.2, CsaV3_4G013480 (a RING-type E3 ubiquitin transferase) for gLTG4.1, and CsaV3_5G029350 (a serine/threonine-protein kinase) for gLTG5.2. The function for CsPPR (CsaV3_1G044080) in regulating LTG was confirmed, as Arabidopsis lines ectopically expressing CsPPR showed higher germination and survival rates at 4°C compared to the wild-type, which preliminarily illustrates that CsPPR positively regulates cucumber cold tolerance at the germination stage. This study will provide insights into cucumber LT-tolerance mechanisms and further promote cucumber breeding development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA