Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 133(5): 400-411, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37492967

RESUMEN

BACKGROUND: FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS: We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS: Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (ß1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS: Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.


Asunto(s)
Actinas , Cardiomiopatías , Ratones , Animales , Filaminas/genética , Filaminas/metabolismo , Actinas/genética , Actinas/metabolismo , Músculo Esquelético/metabolismo , Cardiomiopatías/genética , Miocitos Cardíacos/metabolismo , Mutación , Mamíferos
2.
PLoS Genet ; 17(9): e1009785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34506481

RESUMEN

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Asunto(s)
Complejo Mediador/metabolismo , Miocitos Cardíacos/metabolismo , Transcripción Genética , Animales , Femenino , Masculino , Complejo Mediador/genética , Complejo Mediador/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
J Mol Cell Cardiol ; 175: 44-48, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539111

RESUMEN

Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown. In this study, we report that DELE1 is dispensable for cardiac development and function under baseline conditions. Conversely, DELE1 is essential for mediating an adaptive response to mitochondrial dysfunction-triggered stress in the heart, playing a protective role in mitochondrial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Mitocondrias , Humanos , Fosforilación , Mitocondrias/genética , Mitocondrias/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo
4.
Circulation ; 145(8): 586-602, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34915728

RESUMEN

BACKGROUND: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 (PR domain-containing 16) cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. METHODS: Prdm16 cardiomyocyte-specific knockout (Prdm16cKO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and chromatin immunoprecipitation deep sequencing were performed to identify direct transcriptional targets of PRDM16 in cardiomyocytes. Single-cell RNA sequencing in combination with spatial transcriptomics was used to determine cardiomyocyte identity at the single-cell level. RESULTS: Cardiomyocyte-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. PRDM16 functioned mechanistically as a compact myocardium-enriched transcription factor that activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16cKO LV compact myocardial cardiomyocytes shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial cardiomyocytes or neurons. Chamber-specific transcriptional regulation by PRDM16 was attributable in part to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. CONCLUSIONS: These results demonstrate that disruption of proper specification of compact cardiomyocytes may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of the LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
5.
Circ Res ; 127(2): 284-297, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32345129

RESUMEN

RATIONALE: ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE: To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS: We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS: ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.


Asunto(s)
Bloqueo Atrioventricular/metabolismo , Nodo Atrioventricular/metabolismo , Función Ventricular , Proteína de la Zonula Occludens-1/metabolismo , Animales , Bloqueo Atrioventricular/fisiopatología , Nodo Atrioventricular/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Conexinas/genética , Conexinas/metabolismo , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Vinculina/genética , Vinculina/metabolismo , Proteína de la Zonula Occludens-1/genética , alfa Catenina/genética , alfa Catenina/metabolismo
6.
Circulation ; 142(4): 365-379, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32393053

RESUMEN

BACKGROUND: Metabolic disorders such as obesity and diabetes mellitus can cause dysfunction of endothelial cells (ECs) and vascular rarefaction in adipose tissues. However, the modulatory role of ECs in adipose tissue function is not fully understood. Other than vascular endothelial growth factor-vascular endothelial growth factor receptor-mediated angiogenic signaling, little is known about the EC-derived signals in adipose tissue regulation. We previously identified Argonaute 1 (AGO1; a key component of microRNA-induced silencing complex) as a crucial regulator in hypoxia-induced angiogenesis. In this study, we intend to determine the AGO1-mediated EC transcriptome, the functional importance of AGO1-regulated endothelial function in vivo, and the relevance to adipose tissue function and obesity. METHODS: We generated and subjected mice with EC-AGO1 deletion (EC-AGO1-knockout [KO]) and their wild-type littermates to a fast food-mimicking, high-fat high-sucrose diet and profiled the metabolic phenotypes. We used crosslinking immunoprecipitation- and RNA-sequencing to identify the AGO1-mediated mechanisms underlying the observed metabolic phenotype of EC-AGO1-KO. We further leveraged cell cultures and mouse models to validate the functional importance of the identified molecular pathway, for which the translational relevance was explored using human endothelium isolated from healthy donors and donors with obesity/type 2 diabetes mellitus. RESULTS: We identified an antiobesity phenotype of EC-AGO1-KO, evident by lower body weight and body fat, improved insulin sensitivity, and enhanced energy expenditure. At the organ level, we observed the most significant phenotype in the subcutaneous and brown adipose tissues of KO mice, with greater vascularity and enhanced browning and thermogenesis. Mechanistically, EC-AGO1 suppression results in inhibition of thrombospondin-1 (THBS1/TSP1), an antiangiogenic and proinflammatory cytokine that promotes insulin resistance. In EC-AGO1-KO mice, overexpression of TSP1 substantially attenuated the beneficial phenotype. In human endothelium isolated from donors with obesity or type 2 diabetes mellitus, AGO1 and THBS1 are expressed at higher levels than the healthy controls, supporting a pathological role of this pathway. CONCLUSIONS: Our study suggests a novel mechanism by which ECs, through the AGO1-TSP1 pathway, control vascularization and function of adipose tissues, insulin sensitivity, and whole-body metabolic state.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Argonautas/metabolismo , Susceptibilidad a Enfermedades , Endotelio/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Adulto , Animales , Proteínas Argonautas/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Factores Eucarióticos de Iniciación/genética , Femenino , Perfilación de la Expresión Génica , Marcación de Gen , Sitios Genéticos , Humanos , Resistencia a la Insulina , Masculino , Enfermedades Metabólicas/diagnóstico , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Obesidad , Fenotipo
8.
Am J Physiol Heart Circ Physiol ; 318(6): H1509-H1515, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383995

RESUMEN

Protein kinases play an integral role in cardiac development, function, and disease. Recent experimental and clinical data have implied that protein kinases belonging to a family of atypical α-protein kinases, including α-protein kinase 2 (ALPK2), are important for regulating cardiac development and maintaining function via regulation of WNT signaling. A recent study in zebrafish reported that loss of ALPK2 leads to severe cardiac defects; however, the relevance of ALPK2 has not been studied in a mammalian animal model. To assess the role of ALPK2 in the mammalian heart, we generated two independent global Alpk2-knockout (Alpk2-gKO) mouse lines, using CRISPR/Cas9 technology. We performed physiological and biochemical analyses of Alpk2-gKO mice to determine the functional, morphological, and molecular consequences of Alpk2 deletion at the organismal level. We found that Alpk2-gKO mice exhibited normal cardiac function and morphology up to one year of age. Moreover, we did not observe altered WNT signaling in neonatal Alpk2-gKO mouse hearts. In conclusion, Alpk2 is dispensable for cardiac development and function in the murine model. Our results suggest that Alpk2 is a rapidly evolving gene that lost its essential cardiac functions in mammals.NEW & NOTEWORTHY Several studies indicated the importance of ALPK2 for cardiac function and development. A recent study in zebrafish report that loss of ALPK2 leads to severe cardiac defects. In contrast, murine Alpk2-gKO models developed in this work display no overt cardiac phenotype. Our results suggest ALPK2, as a rapidly evolving gene, lost its essential cardiac functions in mammals.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Proteínas Quinasas/genética , Animales , Corazón/fisiología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo
9.
Circ Res ; 122(4): 583-590, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29269349

RESUMEN

RATIONALE: Myocardial infarction is a major cause of adult mortality worldwide. The origin(s) of cardiac fibroblasts that constitute the postinfarct scar remain controversial, in particular the potential contribution of bone marrow lineages to activated fibroblasts within the scar. OBJECTIVE: The aim of this study was to establish the origin(s) of infarct fibroblasts using lineage tracing and bone marrow transplants and a robust marker for cardiac fibroblasts, the Collagen1a1-green fluorescent protein reporter. METHODS AND RESULTS: Using genetic lineage tracing or bone marrow transplant, we found no evidence for collagen-producing fibroblasts derived from hematopoietic or bone marrow lineages in hearts subjected to permanent left anterior descending coronary artery ligation. In fact, fibroblasts within the infarcted area were largely of epicardial origin. Intriguingly, collagen-producing fibrocytes from hematopoietic lineages were observed attached to the epicardial surface of infarcted and sham-operated hearts in which a suture was placed around the left anterior descending coronary artery. CONCLUSIONS: In this controversial field, our study demonstrated that the vast majority of infarct fibroblasts were of epicardial origin and not derived from bone marrow lineages, endothelial-to-mesenchymal transition, or blood. We also noted the presence of collagen-producing fibrocytes on the epicardial surface that resulted at least in part from the surgical procedure.


Asunto(s)
Células de la Médula Ósea/citología , Linaje de la Célula , Infarto del Miocardio/terapia , Miofibroblastos/citología , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/efectos adversos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Pericardio/citología
12.
J Mol Cell Cardiol ; 108: 86-94, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28526246

RESUMEN

RATIONALE: Lysosomal associated membrane protein type-2 (LAMP-2) is a highly conserved, ubiquitous protein that is critical for autophagic flux. Loss of function mutations in the LAMP-2 gene cause Danon disease, a rare X-linked disorder characterized by developmental delay, skeletal muscle weakness, and severe cardiomyopathy. We previously found that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from Danon patients exhibited significant mitochondrial oxidative stress and apoptosis. Understanding how loss of LAMP-2 expression leads to cardiomyocyte dysfunction and heart failure has important implications for the treatment of Danon disease as well as a variety of other cardiac disorders associated with impaired autophagy. OBJECTIVE: Elucidate the pathophysiology of cardiac dysfunction in Danon disease. METHODS AND RESULTS: We created hiPSCs from two patients with Danon disease and differentiated those cells into hiPSC-CMs using well-established protocols. Danon hiPSC-CMs demonstrated an accumulation of damaged mitochondria, disrupted mitophagic flux, depressed mitochondrial respiratory capacity, and abnormal gene expression of key mitochondrial pathways. Restoring the expression of LAMP-2B, the most abundant LAMP-2 isoform in the heart, rescued mitophagic flux as well as mitochondrial health and bioenergetics. To confirm our findings in vivo, we evaluated Lamp-2 knockout (KO) mice. Impaired autophagic flux was noted in the Lamp-2 KO mice compared to WT reporter mice, as well as an increased number of abnormal mitochondria, evidence of incomplete mitophagy, and impaired mitochondrial respiration. Physiologically, Lamp-2 KO mice demonstrated early features of contractile dysfunction without overt heart failure, indicating that the metabolic abnormalities associated with Danon disease precede the development of end-stage disease and are not merely part of the secondary changes associated with heart failure. CONCLUSIONS: Incomplete mitophagic flux and mitochondrial dysfunction are noted in both in vitro and in vivo models of Danon disease, and proceed overt cardiac contractile dysfunction. This suggests that impaired mitochondrial clearance may be central to the pathogenesis of disease and a potential target for therapeutic intervention.


Asunto(s)
Enfermedad por Depósito de Glucógeno de Tipo IIb/genética , Enfermedad por Depósito de Glucógeno de Tipo IIb/metabolismo , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitofagia/genética , Animales , Técnicas de Inactivación de Genes , Enfermedad por Depósito de Glucógeno de Tipo IIb/diagnóstico , Hemodinámica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Imagen por Resonancia Magnética , Ratones Noqueados , Mitocondrias Cardíacas/ultraestructura , Modelos Biológicos , Miocitos Cardíacos/metabolismo
14.
Circ Res ; 116(5): e28-39, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25605649

RESUMEN

RATIONALE: Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and overexpression of Gq and CaMKIIδ recapitulates hypertrophy decompensation. OBJECTIVE: To determine whether CaMKIIδ contributes to hypertrophy decompensation provoked by Gq. METHODS AND RESULTS: Compared with Gq mice, compound Gq/CaMKIIδ knockout mice developed a similar degree of cardiac hypertrophy but exhibited significantly improved left ventricular function, less cardiac fibrosis and cardiomyocyte apoptosis, and fewer ventricular arrhythmias. Markers of oxidative stress were elevated in mitochondria from Gq versus wild-type mice and respiratory rates were lower; these changes in mitochondrial function were restored by CaMKIIδ deletion. Gq-mediated increases in mitochondrial oxidative stress, compromised membrane potential, and cell death were recapitulated in neonatal rat ventricular myocytes infected with constitutively active Gq and attenuated by CaMKII inhibition. Deep RNA sequencing revealed altered expression of 41 mitochondrial genes in Gq hearts, with normalization of ≈40% of these genes by CaMKIIδ deletion. Uncoupling protein 3 was markedly downregulated in Gq or by Gq expression in neonatal rat ventricular myocytes and reversed by CaMKIIδ deletion or inhibition, as was peroxisome proliferator-activated receptor α. The protective effects of CaMKIIδ inhibition on reactive oxygen species generation and cell death were abrogated by knock down of uncoupling protein 3. Conversely, restoration of uncoupling protein 3 expression attenuated reactive oxygen species generation and cell death induced by CaMKIIδ. Our in vivo studies further demonstrated that pressure overload induced decreases in peroxisome proliferator-activated receptor α and uncoupling protein 3, increases in mitochondrial protein oxidation, and hypertrophy decompensation, which were attenuated by CaMKIIδ deletion. CONCLUSIONS: Mitochondrial gene reprogramming induced by CaMKIIδ emerges as an important mechanism contributing to mitotoxicity in decompensating hypertrophy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Cardiomegalia/enzimología , Cardiomiopatía Dilatada/etiología , Insuficiencia Cardíaca/etiología , Mitocondrias Cardíacas/fisiología , Acetilcisteína/farmacología , Animales , Apoptosis , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia/fisiopatología , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/prevención & control , Células Cultivadas , Progresión de la Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/fisiopatología , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Canales Iónicos/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , PPAR alfa/biosíntesis , PPAR alfa/genética , Mutación Puntual , Presión , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Ratas , Especies Reactivas de Oxígeno , Análisis de Secuencia de ARN , Sulfonamidas/farmacología , Transfección , Proteína Desacopladora 3
15.
J Cell Physiol ; 231(2): 505-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26201683

RESUMEN

Exercise is dependent on adequate oxygen supply for mitochondrial respiration in both cardiac and locomotor muscle. To determine whether skeletal myofiber VEGF is critical for regulating exercise capacity, independent of VEGF function in the heart, ablation of the VEGF gene was targeted to skeletal myofibers (skmVEGF-/-) during embryogenesis (∼ E9.5), leaving intact VEGF expression by all other cells in muscle. In adult mice, VEGF levels were decreased in the soleus (by 65%), plantaris (94%), gastrocnemius (74%), EDL (99%) and diaphragm (64%) (P < 0.0001, each muscle). VEGF levels were unchanged in the heart. Treadmill speed (WT 86 ± 4 cm/sec, skmVEGF-/- 70 ± 5 cm/sec, P = 0.006) and endurance (WT 78 ± 24 min, skmVEGF-/- 18 ± 4 min, P = 0.0004) were severely limited in skmVEGF-/- mice in contrast to minor effect of conditional skmVEGF gene deletion in the adult. Body weight was also reduced (WT 22.8 ± 1.6 g, skmVEGF-/-, 21.1 ± 1.5, P = 0.02), but the muscle mass/body weight ratio was unchanged. The capillary/fiber ratio was lower in skmVEGF-/- plantaris (WT 1.51 ± 0.12, skmVEGF-/- 1.16 ± 0.20, P = 0.01), gastrocnemius (WT 1.61 ± 0.08, skmVEGF-/- 1.39 ± 0.08, P = 0.01), EDL (WT 1.36 ± 0.07, skmVEGF-/- 1.14 ± 0.13, P = 0.03) and diaphragm (WT 1.39 ± 0.18, skmVEGF-/- 0.79 ± 0.16, P = 0.0001) but, not in soleus. Cardiac function (heart rate, maximal pressure, maximal dP/dt, minimal dP/dt,) in response to dobutamine was not impaired in anesthetized skmVEGF-/- mice. Isolated soleus and EDL fatigue times were 16% and 20% (P < 0.02) longer, respectively, in skmVEGF-/- mice than the WT group. These data suggest that skeletal myofiber VEGF expressed during development is necessary to establish capillary networks that allow maximal exercise capacity.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Esfuerzo Físico/fisiología , Factor A de Crecimiento Endotelial Vascular/deficiencia , Animales , Capilares/crecimiento & desarrollo , Capilares/fisiología , Prueba de Esfuerzo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Fatiga Muscular/genética , Fatiga Muscular/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Esfuerzo Físico/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/fisiología
16.
Hum Mol Genet ; 23(5): 1134-50, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24108106

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC) termed a 'disease of the desmosome' is an inherited cardiomyopathy that recently underwent reclassification owing to the identification of left-dominant and biventricular disease forms. Homozygous loss-of-function mutations in the desmosomal component, desmoplakin, are found in patients exhibiting a biventricular form of ARVC; however, no models recapitulate the postnatal hallmarks of the disease as seen in these patients. To gain insights into the homozygous loss-of-function effects of desmoplakin in the heart, we generated cardiomyocyte-specific desmoplakin-deficient mice (DSP-cKO) using ventricular myosin light chain-2-Cre mice. Homozygous DSP-cKO mice are viable but display early ultrastructural defects in desmosomal integrity leading to a cardiomyopathy reminiscent of a biventricular form of ARVC, which includes cell death and fibro-fatty replacement within the ventricle leading to biventricular dysfunction, failure and premature death. DSP-cKO mice also exhibited ventricular arrhythmias that are exacerbated with exercise and catecholamine stimulation. Furthermore, DSP-cKO hearts exhibited right ventricular conduction defects associated with loss of connexin 40 expression and electrical wavefront propagation defects associated with loss of connexin 43 expression. Dose-dependent assessment of the effects of loss of desmoplakin in neonatal ventricular cardiomyocytes revealed primary loss of connexin 43 levels, phosphorylation and function independent of the molecular dissociation of the mechanical junction complex and fibro-fatty manifestation associated with ARVC, suggesting a role for desmoplakin as a primary stabilizer of connexin integrity. In summary, we provide evidence for a novel mouse model, which is reminiscent of the postnatal onset of ARVC while highlighting mechanisms underlying a biventricular form of human ARVC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Conexinas/deficiencia , Animales , Animales Recién Nacidos , Arritmias Cardíacas/genética , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/mortalidad , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Catecolaminas/farmacología , Conexina 43/deficiencia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Desmoplaquinas/deficiencia , Modelos Animales de Enfermedad , Electrocardiografía , Expresión Génica , Corazón/efectos de los fármacos , Sistema de Conducción Cardíaco/anomalías , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Fosforilación , Condicionamiento Físico Animal/efectos adversos , Proteína alfa-5 de Unión Comunicante
17.
Am J Physiol Cell Physiol ; 309(7): C470-9, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26157009

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a degenerative disease primarily affecting skeletal muscles in early childhood as well as cardiac muscle at later stages. EDMD is caused by a number of mutations in genes encoding proteins associated with the nuclear envelope (e.g., Emerin, Lamin A/C, and Nesprin). Recently, a novel protein, Lim-domain only 7 (lmo7) has been reported to play a role in the molecular pathogenesis of EDMD. Prior in vitro and in vivo studies suggested the intriguing possibility that Lmo7 plays a role in skeletal or cardiac muscle pathophysiology. To further understand the in vivo role of Lmo7 in striated muscles, we generated a novel Lmo7-null (lmo7(-/-)) mouse line. Using this mouse line, we examined skeletal and cardiac muscle physiology, as well as the role of Lmo7 in a model of muscular dystrophy and regeneration using the dystrophin-deficient mdx mouse model. Our results demonstrated that lmo7(-/-) mice had no abnormalities in skeletal muscle morphology, physiological function, or regeneration. Cardiac function was also unaffected. Moreover, we found that ablation of lmo7 in mdx mice had no effect on the observed myopathy and muscular regeneration exhibited by mdx mice. Molecular analyses also showed no changes in dystrophin complex factors, MAPK pathway components, and Emerin levels in lmo7 knockout mice. Taken together, we conclude that Lmo7 is dispensable for skeletal muscle and cardiac physiology and pathophysiology.


Asunto(s)
Corazón/fisiología , Proteínas con Dominio LIM/genética , Músculo Esquelético/fisiología , Distrofia Muscular de Emery-Dreifuss/patología , Miocardio/metabolismo , Factores de Transcripción/genética , Animales , Expresión Génica/genética , Proteínas con Dominio LIM/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distrofia Muscular de Emery-Dreifuss/genética , Factores de Transcripción/metabolismo
18.
Circ Res ; 112(6): 935-44, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23388157

RESUMEN

RATIONALE: Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated as a maladaptive mediator of cardiac ischemic injury. We hypothesized that the inflammatory response associated with in vivo ischemia/reperfusion (I/R) is initiated through CaMKII signaling. OBJECTIVE: To assess the contribution of CaMKIIδ to the development of inflammation, infarct, and ventricular dysfunction after in vivo I/R and define early cardiomyocyte-autonomous events regulated by CaMKIIδ using cardiac-specific knockout mice. METHODS AND RESULTS: Wild-type and CaMKIIδ knockout mice were subjected to in vivo I/R by occlusion of the left anterior descending artery for 1 hour followed by reperfusion for various times. CaMKIIδ deletion protected the heart against I/R damage as evidenced by decreased infarct size, attenuated apoptosis, and improved functional recovery. CaMKIIδ deletion also attenuated I/R-induced inflammation and upregulation of nuclear factor-κB (NF-κB) target genes. Further studies demonstrated that I/R rapidly increases CaMKII activity, leading to NF-κB activation within minutes of reperfusion. Experiments using cyclosporine A and cardiac-specific CaMKIIδ knockout mice indicate that NF-κB activation is initiated independent of necrosis and within cardiomyocytes. Expression of activated CaMKII in cardiomyocytes leads to IκB kinase phosphorylation and concomitant increases in nuclear p65. Experiments using an IκB kinase inhibitor support the conclusion that this is a proximal site of CaMKII-mediated NF-κB activation. CONCLUSIONS: This is the first study demonstrating that CaMKIIδ mediates NF-κB activation in cardiomyocytes after in vivo I/R and suggests that CaMKIIδ serves to trigger, as well as to sustain subsequent changes in inflammatory gene expression that contribute to myocardial I/R damage.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Daño por Reperfusión Miocárdica/etiología , FN-kappa B/metabolismo , Animales , Apoptosis/fisiología , Ciclosporina/farmacología , Perfilación de la Expresión Génica , Corazón , Proteínas I-kappa B/antagonistas & inhibidores , Proteínas I-kappa B/metabolismo , Ratones , Ratones Noqueados , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Recuperación de la Función/fisiología , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba
19.
J Biol Chem ; 288(6): 4252-64, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23266827

RESUMEN

Integrins are adhesive, signaling, and mechanotransduction proteins. Talin (Tln) activates integrins and links it to the actin cytoskeleton. Vertebrates contain two talin genes, tln1 and tln2. How Tln1 and Tln2 function in cardiac myocytes (CMs) is unknown. Tln1 and Tln2 expression were evaluated in the normal embryonic and adult mouse heart as well as in control and failing human adult myocardium. Tln1 function was then tested in the basal and mechanically stressed myocardium after cardiomyocyte-specific excision of the Tln1 gene. During embryogenesis, both Tln forms are highly expressed in CMs, but in the mature heart Tln2 becomes the main Tln isoform, localizing to the costameres. Tln1 expression is minimal in the adult CM. With pharmacological and mechanical stress causing hypertrophy, Tln1 is up-regulated in CMs and is specifically detected at costameres, suggesting its importance in the compensatory response to CM stress. In human failing heart, CM Tln1 also increases compared with control samples from normal functioning myocardium. To directly test Tln1 function in CMs, we generated CM-specific Tln1 knock-out mice (Tln1cKO). Tln1cKO mice showed normal basal cardiac structure and function but when subjected to pressure overload showed blunted hypertrophy, less fibrosis, and improved cardiac function versus controls. Acute responses of ERK1/2, p38, Akt, and glycogen synthase kinase 3 after mechanical stress were strongly blunted in Tln1cKO mice. Given these results, we conclude that Tln1 and Tln2 have distinct functions in the myocardium. Our data show that reduction of CM Tln1 expression can lead to improved cardiac remodeling following pressure overload.


Asunto(s)
Cardiomegalia/metabolismo , Miocardio/metabolismo , Talina/biosíntesis , Adulto , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Fisiológico/genética , Talina/genética , Regulación hacia Arriba/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 307(5): H773-81, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24993042

RESUMEN

Discoidin domain receptor 2 (DDR2) is a fibrillar collagen receptor that is expressed in mesenchymal cells throughout the body. In the heart, DDR2 is selectively expressed on cardiac fibroblasts. We generated a germline DDR2 knockout mouse and used this mouse to examine the role of DDR2 deletion on heart structure and function. Echocardiographic measurements from null mice were consistent with those from a smaller heart, with reduced left ventricular chamber dimensions and little change in wall thickness. Fractional shortening appeared normal. Left ventricular pressure measurements revealed mild inotropic and lusitropic abnormalities that were accentuated by dobutamine infusion. Both body and heart weights from 10-wk-old male mice were ~20% smaller in null mice. The reduced heart size was not simply due to reduced body weight, since cardiomyocyte lengths were atypically shorter in null mice. Although normalized cardiac collagen mass (assayed by hydroxyproline content) was not different in null mice, the collagen area fraction was statistically higher, suggesting a reduced collagen density from altered collagen deposition and cross-linking. Cultured cardiac fibroblasts from null mice deposited collagen at a slower rate than wild-type littermates, possibly due to the expression of lower prolyl 4-hydroxylase α-isoform 1 enzyme levels. We conclude that genetic deletion of the DDR2 collagen receptor alters cardiac fibroblast function. The resulting perturbations in collagen deposition can influence the structure and function of mature cardiomyocytes.


Asunto(s)
Eliminación de Gen , Mutación de Línea Germinal , Ventrículos Cardíacos/anatomía & histología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Mitogénicos/metabolismo , Función Ventricular , Secuencia de Aminoácidos , Animales , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Receptores con Dominio Discoidina , Dobutamina/farmacología , Ecocardiografía , Ventrículos Cardíacos/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Mitogénicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA