Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811853

RESUMEN

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Asunto(s)
Caenorhabditis elegans , Cisteína , Cistina , Ratones Noqueados , Oxidación-Reducción , Proteoma , Tiorredoxinas , Animales , Humanos , Ratones , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cisteína/metabolismo , Cistina/metabolismo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteoma/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética
2.
EMBO J ; 40(3): e105793, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33314217

RESUMEN

Mammalian TFEB and TFE3, as well as their ortholog in Caenorhabditis elegans HLH-30, play an important role in mediating cellular response to a variety of stress conditions, including nutrient deprivation, oxidative stress, and pathogen infection. In this study, we identify a novel mechanism of TFEB/HLH-30 regulation through a cysteine-mediated redox switch. Under stress conditions, TFEB-C212 undergoes oxidation, allowing the formation of intermolecular disulfide bonds that result in TFEB oligomerization. TFEB oligomers display increased resistance to mTORC1-mediated inactivation and are more stable under prolonged stress conditions. Mutation of the only cysteine residue present in HLH-30 (C284) significantly reduced its activity, resulting in developmental defects and increased pathogen susceptibility in worms. Therefore, cysteine oxidation represents a new type of TFEB post-translational modification that functions as a molecular switch to link changes in redox balance with expression of TFEB/HLH-30 target genes.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mutación , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Cisteína , Células HeLa , Humanos , Ratones , Oxidación-Reducción , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Células RAW 264.7
3.
Free Radic Biol Med ; 223: 369-383, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059513

RESUMEN

Basic Helix-Loop-Helix (bHLH) transcription factors TFEB/TFE3 and HLH-30 are key regulators of autophagy induction and lysosomal biogenesis in mammals and C. elegans, respectively. While much is known about the regulation of TFEB/TFE3, how HLH-30 subcellular dynamics and transactivation are modulated are yet poorly understood. Thus, elucidating the regulation of C. elegans HLH-30 will provide evolutionary insight into the mechanisms governing the function of bHLH transcription factor family. We report here that HLH-30 is retained in the cytoplasm mainly through its conserved Ser201 residue and that HLH-30 physically interacts with the 14-3-3 protein FTT-2 in this location. The FoxO transcription factor DAF-16 is not required for HLH-30 nuclear translocation upon stress, despite that both proteins partner to form a complex that coordinately regulates several organismal responses. Similar as described for DAF-16, the importin IMB-2 assists HLH-30 nuclear translocation, but constitutive HLH-30 nuclear localization is not sufficient to trigger its distinctive transcriptional response. Furthermore, we identify FTT-2 as the target of diethyl maleate (DEM), a GSH depletor that causes a transient nuclear translocation of HLH-30. Together, our work demonstrates that the regulation of TFEB/TFE3 and HLH-30 family members is evolutionarily conserved and that, in addition to a direct redox regulation through its conserved single cysteine residue, HLH-30 can also be indirectly regulated by a redox-dependent mechanism, probably through FTT-2 oxidation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Oxidación-Reducción , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Autofagia , Transporte de Proteínas , Citoplasma/metabolismo
4.
Redox Biol ; 28: 101323, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31557719

RESUMEN

Human selenium-binding protein 1 (SELENBP1) was originally identified as a protein binding selenium, most likely as selenite. SELENBP1 is associated with cellular redox and thiol homeostasis in several respects, including its established role as a methanethiol oxidase that is involved in degradation of methanethiol, a methionine catabolite, generating hydrogen sulfide (H2S) and hydrogen peroxide (H2O2). As both H2S and reactive oxygen species (such as H2O2) are major regulators of Caenorhabditis elegans lifespan and stress resistance, we hypothesized that a SELENBP1 ortholog in C. elegans would likely be involved in regulating these aspects. Here we characterize Y37A1B.5, a putative selenium-binding protein 1 ortholog in C. elegans with 52% primary structure identity to human SELENBP1. While conferring resistance to toxic concentrations of selenite, Y37A1B.5 also attenuates resistance to oxidative stress and lowers C. elegans lifespan: knockdown of Y37A1B.5 using RNA interference resulted in an approx. 10% increase of C. elegans lifespan and an enhanced resistance against the redox cycler paraquat, as well as enhanced motility. Analyses of transgenic reporter strains suggest hypodermal expression and cytoplasmic localization of Y37A1B.5, whose expression decreases with worm age. We identify the transcriptional coregulator MDT-15 and transcription factor EGL-27 as regulators of Y37A1B.5 levels and show that the lifespan extending effect elicited by downregulation of Y37A1B.5 is independent of known MDT-15 interacting factors, such as DAF-16 and NHR-49. In summary, Y37A1B.5 is an ortholog of SELENBP1 that shortens C. elegans lifespan and lowers resistance against oxidative stress, while allowing for a better survival under toxic selenite concentrations.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ácido Selenioso/efectos adversos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Citoplasma/metabolismo , Resistencia a Medicamentos , Regulación de la Expresión Génica , Humanos , Longevidad , Proteínas de la Membrana/química , Estrés Oxidativo , Paraquat/efectos adversos , Proteínas de Unión al Selenio/química , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Homología Estructural de Proteína
5.
Rev Med Inst Mex Seguro Soc ; 57(1): 36-41, 2019 Apr 01.
Artículo en Español | MEDLINE | ID: mdl-31071253

RESUMEN

Legg-Calvé-Perthes disease (LCPD) is a childhood orthopedic pathology that affects the development of the hip. It is a rare disease with a huge variation in annual incidence. It occurs approximately five times more often in boys than in girls. The objective of this article was to formulate a hypothesis about the possible origin of LCPD, from the paleopathological findings of this disease reported until 2017, and to highlight the importance of anthropology, history, paleontology and paleopathology to the study of the origins of disease. By using eight web-based search engines, we performed a review of articles focused on the history, genetics and paleopathological findings of LCPD; we evaluated in total 133 articles published between 1910 and 2017. Out of these, 20 articles belonging to the same publication period were included in this analysis. LCPD was described for the first time approximately 100 years ago and without knowing it was a new disease. In the last years, human remains have been found in which LCPD has been identified, providing relevant information about the origin of this pathology. These data and their historical context can be a basis to propose the Asian continent as the site of origin of LCPD; however, new anthropological, genetic and paleopathological studies are needed to reinforce or refute this hypothesis.


La enfermedad de Legg-Calvé-Perthes (ELCP) es una afección ortopédica infantil que repercute en el desarrollo de la cadera. Es una enfermedad rara con incidencia anual variable. Es aproximadamente cinco veces más frecuente en niños que en niñas. El objetivo de este artículo fue formular una hipótesis acerca del posible origen de la ELCP a partir de hallazgos paleopatológicos reportados hasta el año 2017, además de resaltar la importancia que ofrecen la antropología, la historia, la paleontología y la paleopatología para el estudio del origen de las enfermedades. Mediante ocho buscadores se hizo una revisión de artículos referentes a la historia, la genética y los hallazgos paleopatológicos de la ELCP; se evaluaron un total de 133 artículos publicados entre 1910 y 2017. De ellos, fueron incluidos en este análisis 20 artículos que abarcaron el mismo periodo de publicación. La ELCP comenzó a describirse hace poco más de 100 años y sin el conocimiento de que se trataba de una entidad nueva. En los últimos años se han encontrado restos humanos en los que se ha identificado la ELCP, lo cual ha brindado información relevante respecto al origen de este padecimiento. Estos datos y su contexto histórico pueden ser fundamentos para plantear al continente asiático como el sitio de origen de la ELCP; sin embargo, se requiere de nuevos estudios antropológicos, genéticos y paleopatológicos para reforzar o refutar esta hipótesis.


Asunto(s)
Enfermedad de Legg-Calve-Perthes/historia , Américas , Antropología Médica , Asia , Europa (Continente) , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Enfermedad de Legg-Calve-Perthes/genética , Enfermedad de Legg-Calve-Perthes/patología , Paleopatología
6.
Redox Biol ; 24: 101178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30953965

RESUMEN

Thioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans. We find that TRX-1 dually regulates the formation of an endurance larval stage (dauer) by interacting with the insulin pathway in a redox-independent manner and the cGMP pathway in a redox-dependent manner. Moreover, the requirement of TRX-1 for the extended longevity of worms with compromised insulin signalling or under calorie restriction relies on TRX-1 redox activity. In contrast, the nuclear translocation of the SKN-1 transcription factor and increased LIPS-6 protein levels in the intestine upon trx-1 deficiency are strictly redox-independent. Finally, we identify a novel function of C. elegans TRX-1 in male food-leaving behaviour that is redox-dependent. Taken together, our results position C. elegans as an ideal model to gain mechanistic insight into the redox-independent functions of metazoan thioredoxins, overcoming the limitations imposed by the embryonic lethal phenotypes of thioredoxin mutants in higher organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Oxidación-Reducción , Tiorredoxinas/metabolismo , Sustitución de Aminoácidos , Animales , Biomarcadores , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cisteína/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Masculino , Mutación , Transporte de Proteínas , Tiorredoxinas/química , Tiorredoxinas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell Death Differ ; 26(9): 1545-1565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30770874

RESUMEN

In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.


Asunto(s)
Autofagia/genética , Caenorhabditis elegans/genética , Glutatión Reductasa/metabolismo , Glutatión/metabolismo , Péptidos/toxicidad , Agregación Patológica de Proteínas/metabolismo , Proteostasis/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Glutatión/genética , Glutatión Reductasa/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Maleatos/farmacología , Células Musculares/metabolismo , Neuronas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Péptidos/antagonistas & inhibidores , Fenotipo , Proteolisis/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Neuropharmacology ; 136(Pt B): 216-222, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859884

RESUMEN

Astrocytes are major players in brain glucose metabolism, supporting neuronal needs on demand through mechanisms that are not yet entirely clear. Understanding glucose metabolism in astrocytes is therefore of great consequence to unveil novel targets and develop new drugs to restore brain energy balance in pathology. Contrary to what has been held for many years, we now present evidence that insulin, in association with the related insulin-like growth factor I (IGF-I) modulates brain glucose metabolism through a concerted action on astrocytes. Cooperativity of insulin and IGF-I relies on the IGF-I receptor (IGF-IR), that acts as a scaffold of Glucose Transporter 1 (GluT1) regulating its activity by retaining it in the cytoplasm or, in response to a concerted action of insulin and IGF-I, translocating it to the cell membrane. Regulated translocation of GluT1 to the cell membrane by IGF-IR involves an intricate repertoire of protein-protein interactions amenable to drug modulation, particularly by interfering with IGF-IR/GluT1 interactions. We propose that this mechanism accounts for a substantial proportion of basal and regulated glucose uptake by astrocytes as GluT1 is the major glucose transporter in these brain cells. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos
10.
mSphere ; 3(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29600279

RESUMEN

Acinetobacter baumannii is a significant human pathogen associated with hospital-acquired infections. While adhesion, an initial and important step in A. baumannii infection, is well characterized, the intracellular trafficking of this pathogen inside host cells remains poorly studied. Here, we demonstrate that transcription factor EB (TFEB) is activated after A. baumannii infection of human lung epithelial cells (A549). We also show that TFEB is required for the invasion and persistence inside A549 cells. Consequently, lysosomal biogenesis and autophagy activation were observed after TFEB activation which could increase the death of A549 cells. In addition, using the Caenorhabditis elegans infection model by A. baumannii, the TFEB orthologue HLH-30 was required for survival of the nematode to infection, although nuclear translocation of HLH-30 was not required. These results identify TFEB as a conserved key factor in the pathogenesis of A. baumannii. IMPORTANCE Adhesion is an initial and important step in Acinetobacter baumannii infections. However, the mechanism of entrance and persistence inside host cells is unclear and remains to be understood. In this study, we report that, in addition to its known role in host defense against Gram-positive bacterial infection, TFEB also plays an important role in the intracellular trafficking of A. baumannii in host cells. TFEB was activated shortly after A. baumannii infection and is required for its persistence within host cells. Additionally, using the C. elegans infection model by A. baumannii, the TFEB orthologue HLH-30 was required for survival of the nematode to infection, although nuclear translocation of HLH-30 was not required.


Asunto(s)
Infecciones por Acinetobacter/metabolismo , Acinetobacter baumannii/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Interacciones Huésped-Patógeno , Células A549 , Acinetobacter baumannii/patogenicidad , Animales , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transporte Biológico , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Lisosomas/metabolismo
11.
Free Radic Biol Med ; 96: 446-61, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27117030

RESUMEN

Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode.


Asunto(s)
Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Glutatión Reductasa/genética , Glutatión/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Citoplasma/genética , Citoplasma/metabolismo , Genes Esenciales , Glutatión/genética , Glutatión Reductasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mutantes/genética , Oxidación-Reducción , Isoformas de Proteínas/genética , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA