Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Blood ; 139(2): 228-239, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34359075

RESUMEN

Dysregulation of the c-Myc oncogene occurs in a wide variety of hematologic malignancies, and its overexpression has been linked with aggressive tumor progression. Here, we show that poly (ADP-ribose) polymerase 1 (PARP-1) and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphoma. PARP-1 and PARP-2 catalyze the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphoma, whereas PARP-1 deficiency accelerates lymphomagenesis in the Eµ-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in preleukemic Eµ-Myc B cells, resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1 deficiency induces a proinflammatory response and an increase in regulatory T cells, likely contributing to immune escape of B-cell lymphoma, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centered therapeutic strategies, with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumors.


Asunto(s)
Linfoma de Células B/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Carcinogénesis/genética , Daño del ADN , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Noqueados
2.
Nature ; 553(7687): 171-177, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323295

RESUMEN

Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.


Asunto(s)
Acetaldehído/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Inestabilidad Genómica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Mutación , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Unión de Extremidades , Etanol/administración & dosificación , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Femenino , Eliminación de Gen , Genes p53/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Autoantígeno Ku/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reparación del ADN por Recombinación/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma
3.
Mol Cell ; 61(1): 161-9, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26626482

RESUMEN

G quadruplexes (G4s) can present potent blocks to DNA replication. Accurate and timely replication of G4s in vertebrates requires multiple specialized DNA helicases and polymerases to prevent genetic and epigenetic instability. Here we report that PrimPol, a recently described primase-polymerase (PrimPol), plays a crucial role in the bypass of leading strand G4 structures. While PrimPol is unable to directly replicate G4s, it can bind and reprime downstream of these structures. Disruption of either the catalytic activity or zinc-finger of PrimPol results in extreme G4-dependent epigenetic instability at the BU-1 locus in avian DT40 cells, indicative of extensive uncoupling of the replicative helicase and polymerase. Together, these observations implicate PrimPol in promoting restart of DNA synthesis downstream of, but closely coupled to, G4 replication impediments.


Asunto(s)
Proteínas Aviares/metabolismo , ADN Primasa/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , G-Cuádruplex , Enzimas Multifuncionales/metabolismo , Animales , Proteínas Aviares/genética , Secuencia de Bases , Línea Celular , Pollos , Ensamble y Desensamble de Cromatina , ADN/química , ADN Primasa/genética , ADN Polimerasa Dirigida por ADN/genética , Epigénesis Genética , Inestabilidad Genómica , Histonas/metabolismo , Datos de Secuencia Molecular , Enzimas Multifuncionales/genética , Transfección
4.
Nucleic Acids Res ; 50(13): 7436-7450, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801867

RESUMEN

Replication of the human genome initiates within broad zones of ∼150 kb. The extent to which firing of individual DNA replication origins within initiation zones is spatially stochastic or localised at defined sites remains a matter of debate. A thorough characterisation of the dynamic activation of origins within initiation zones is hampered by the lack of a high-resolution map of both their position and efficiency. To address this shortcoming, we describe a modification of initiation site sequencing (ini-seq), based on density substitution. Newly replicated DNA is rendered 'heavy-light' (HL) by incorporation of BrdUTP while unreplicated DNA remains 'light-light' (LL). Replicated HL-DNA is separated from unreplicated LL-DNA by equilibrium density gradient centrifugation, then both fractions are subjected to massive parallel sequencing. This allows precise mapping of 23,905 replication origins simultaneously with an assignment of a replication initiation efficiency score to each. We show that origin firing within early initiation zones is not randomly distributed. Rather, origins are arranged hierarchically with a set of very highly efficient origins marking zone boundaries. We propose that these origins explain much of the early firing activity arising within initiation zones, helping to unify the concept of replication initiation zones with the identification of discrete replication origin sites.


Asunto(s)
Replicación del ADN , Origen de Réplica , ADN/genética , Replicación del ADN/genética , Genoma Humano , Humanos , Origen de Réplica/genética , Análisis de Secuencia de ADN
5.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478192

RESUMEN

During DNA replication, conflicts with ongoing transcription are frequent and require careful management to avoid genetic instability. R-loops, three-stranded nucleic acid structures comprising a DNA:RNA hybrid and displaced single-stranded DNA, are important drivers of damage arising from such conflicts. How R-loops stall replication and the mechanisms that restrain their formation during S phase are incompletely understood. Here, we show in vivo how R-loop formation drives a short purine-rich repeat, (GAA)10, to become a replication impediment that engages the repriming activity of the primase-polymerase PrimPol. Further, the absence of PrimPol leads to significantly increased R-loop formation around this repeat during S phase. We extend this observation by showing that PrimPol suppresses R-loop formation in genes harbouring secondary structure-forming sequences, exemplified by G quadruplex and H-DNA motifs, across the genome in both avian and human cells. Thus, R-loops promote the creation of replication blocks at susceptible structure-forming sequences, while PrimPol-dependent repriming limits the extent of unscheduled R-loop formation at these sequences, mitigating their impact on replication.


Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , G-Cuádruplex , Enzimas Multifuncionales/metabolismo , Estructuras R-Loop , Fase S , Animales , Células Cultivadas , Pollos , ADN Primasa/genética , ADN de Cadena Simple/química , ADN Polimerasa Dirigida por ADN/genética , Drosophila , Humanos , Enzimas Multifuncionales/genética
6.
Mol Cell ; 47(4): 493-4, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22920289

RESUMEN

The MCM proteins are best known for their role in DNA replication, MCM2-7 forming the replicative helicase. Now, two reports in this issue of Molecular Cell, Nishimura et al. (2012) and Lutzmann et al. (2012) show the less well understood MCM8 and MCM9 to be crucial for effective homologous recombination.

7.
EMBO J ; 33(21): 2507-20, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25190518

RESUMEN

REV1-deficient chicken DT40 cells are compromised in replicating G quadruplex (G4)-forming DNA. This results in localised, stochastic loss of parental chromatin marks and changes in gene expression. We previously proposed that this epigenetic instability arises from G4-induced replication fork stalls disrupting the accurate propagation of chromatin structure through replication. Here, we test this model by showing that a single G4 motif is responsible for the epigenetic instability of the BU-1 locus in REV1-deficient cells, despite its location 3.5 kb from the transcription start site (TSS). The effect of the G4 is dependent on it residing on the leading strand template, but is independent of its in vitro thermal stability. Moving the motif to more than 4 kb from the TSS stabilises expression of the gene. However, loss of histone modifications (H3K4me3 and H3K9/14ac) around the transcription start site correlates with the position of the G4 motif, expression being lost only when the promoter is affected. This supports the idea that processive replication is required to maintain the histone modification pattern and full transcription of this model locus.


Asunto(s)
Replicación del ADN/fisiología , Epigénesis Genética/fisiología , G-Cuádruplex , Inestabilidad Genómica/fisiología , Nucleotidiltransferasas , Animales , Línea Celular , Pollos , Sitios Genéticos/fisiología , Histonas/genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Transcripción Genética/fisiología
8.
Nucleic Acids Res ; 44(15): 7242-50, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27185888

RESUMEN

The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , ADN/biosíntesis , ADN/química , Alelos , Línea Celular , Daño del ADN , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN Polimerasa III/aislamiento & purificación , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Humanos , Inmunoglobulinas/genética , Rayos Ultravioleta
9.
Nucleic Acids Res ; 43(3): 1671-83, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25628356

RESUMEN

The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases.


Asunto(s)
Daño del ADN , ADN Polimerasa III/metabolismo , Reparación del ADN , Animales , Secuencia de Bases , Línea Celular , Pollos , ADN Polimerasa III/química , Cartilla de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fase S
10.
Genome Res ; 20(4): 447-57, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20103589

RESUMEN

Neutral nucleotide substitutions occur at varying rates along genomes, and it remains a major issue to unravel the mechanisms that cause these variations and to analyze their evolutionary consequences. Here, we study the role of replication in the neutral substitution pattern. We obtained a high-resolution replication timing profile of the whole human genome by massively parallel sequencing of nascent BrdU-labeled replicating DNA. These data were compared to the neutral substitution rates along the human genome, obtained by aligning human and chimpanzee genomes using macaque and orangutan as outgroups. All substitution rates increase monotonously with replication timing even after controlling for local or regional nucleotide composition, crossover rate, distance to telomeres, and chromatin compaction. The increase in non-CpG substitution rates might result from several mechanisms including the increase in mutation-prone activities or the decrease in efficiency of DNA repair during the S phase. In contrast, the rate of C --> T transitions in CpG dinucleotides increases in later-replicating regions due to increasing DNA methylation level that reflects a negative correlation between timing and gene expression. Similar results are observed in the mouse, which indicates that replication timing is a main factor affecting nucleotide substitution dynamics at non-CpG sites and constitutes a major neutral process driving mammalian genome evolution.


Asunto(s)
Islas de CpG/genética , Momento de Replicación del ADN/fisiología , Genoma , Mutación Missense , Animales , Replicación del ADN/genética , Replicación del ADN/fisiología , Drosophila , Evolución Molecular , Genoma/genética , Genoma Humano , Células HeLa , Humanos , Macaca/genética , Mamíferos/genética , Ratones , Mutación Missense/fisiología , Pan troglodytes/genética , Pongo pygmaeus/genética , Ratas
11.
PLoS Comput Biol ; 8(4): e1002443, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496629

RESUMEN

In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome.


Asunto(s)
Mapeo Cromosómico/métodos , Replicación del ADN/genética , ADN/genética , Genoma Humano/genética , Genoma/genética , Modelos Genéticos , Origen de Réplica/genética , Secuencia de Bases , Línea Celular , Simulación por Computador , Humanos , Datos de Secuencia Molecular
12.
Mol Biol Evol ; 28(8): 2327-37, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21368316

RESUMEN

During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.


Asunto(s)
Replicación del ADN/genética , Genoma Humano/genética , Mutación/genética , Composición de Base , Línea Celular , Evolución Molecular , Células Germinativas/metabolismo , Células HeLa , Humanos , Células K562 , Modelos Genéticos , Especificidad de Órganos/genética
13.
PLoS Comput Biol ; 7(12): e1002322, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22219720

RESUMEN

Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.


Asunto(s)
Genoma Humano , Origen de Réplica , Separación Celular , Biología Computacional/métodos , Replicación del ADN , Citometría de Flujo , Técnicas Genéticas , Células HeLa , Humanos , Cinética , Modelos Genéticos , Modelos Estadísticos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Factores de Tiempo
14.
Sci Adv ; 8(45): eadd3686, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36351018

RESUMEN

The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.


Asunto(s)
Replicación del ADN , Genoma Humano , Humanos , Origen de Réplica , Mutación , Mutagénesis
15.
Methods Enzymol ; 661: 35-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776220

RESUMEN

DNA can adopt non-B form structures that create significant blocks to DNA synthesis and seeking understanding of the mechanisms cells use to resolve such impediments continues to be a very active area of research. However, the ability to monitor the stalling of DNA synthesis at specific sites in the genome in living cells, of central importance to elucidating these mechanisms, poses a significant technical challenge. Replisome stalling is often transient with only a small fraction of events leading to detectable genetic changes, making traditional reporter assays insensitive to the stalling event per se. On the other hand, the imprint stalling leaves on the epigenome can be exploited as a form of biological 'tape recorder' that captures episodes of fork stalling as heritable changes in histone modifications and in transcription. Here we describe a detailed protocol for monitoring DNA structure-dependent epigenetic instability of the BU-1 locus in the avian cell line DT40, which has proved a sensitive tool for understanding the mechanisms by which structured DNA is replicated in a vertebrate system.


Asunto(s)
Replicación del ADN , ADN , ADN/química , ADN/genética , ADN Helicasas/metabolismo , Epigénesis Genética , Código de Histonas
16.
Genome Biol ; 21(1): 209, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32819438

RESUMEN

BACKGROUND: Short tandem repeats (STRs) contribute significantly to de novo mutagenesis, driving phenotypic diversity and genetic disease. Although highly diverse, their repetitive sequences induce DNA polymerase slippage and stalling, leading to length and sequence variation. However, current studies of DNA synthesis through STRs are restricted to a handful of selected sequences, limiting our broader understanding of their evolutionary behaviour and hampering the characterisation of the determinants of their abundance and stability in eukaryotic genomes. RESULTS: We perform a comprehensive analysis of DNA synthesis at all STR permutations and interrogate the impact of STR sequence and secondary structure on their genomic representation and mutability. To do this, we developed a high-throughput primer extension assay that allows monitoring of the kinetics and fidelity of DNA synthesis through 20,000 sequences comprising all STR permutations in different lengths. By combining these measurements with population-scale genomic data, we show that the response of a model replicative DNA polymerase to variously structured DNA is sufficient to predict the complex genomic behaviour of STRs, including abundance and mutational constraints. We demonstrate that DNA polymerase stalling at DNA structures induces error-prone DNA synthesis, which constrains STR expansion. CONCLUSIONS: Our data support a model in which STR length in eukaryotic genomes results from a balance between expansion due to polymerase slippage at repeated DNA sequences and point mutations caused by error-prone DNA synthesis at DNA structures.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Repeticiones de Microsatélite , Secuencia de Bases , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular , Técnicas Genéticas , Genoma Humano , Humanos , Cinética , Mutagénesis , Mutación , Mutación Puntual
17.
Biotechniques ; 45(6): 649-52, 654, 656-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19238795

RESUMEN

Molecular combing of DNA is an extremely powerful DNA fiber-stretching technique that is often used in DNA replication and genome stability studies. Optimal DNA combing results mainly depend on the quality of the silanized surfaces onto which fibers are stretched. Here we describe an improved method of liquid-phase silanization using trimethoxy-octenylsilane/n-heptane as novel silane/solvent combination. Our simple method produces homogenously modified coverslips in a reproducible manner but does not require any sophisticated or expensive equipment in comparison to other known silanization protocols. However DNA fibers were combed onto these coverslips with very good high-density alignment and stayed irreversibly bound onto the surfaces after various denaturing treatments, as required for different immunofluorescent detection of DNA with incorporated modified nucleotides or FISH.


Asunto(s)
Replicación del ADN , ADN/química , Hibridación Fluorescente in Situ/métodos , Silanos/química , Animales , ADN/metabolismo , Sondas de ADN/metabolismo , ADN Ribosómico , Humanos , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico , Propiedades de Superficie , Xenopus
18.
Nat Chem ; 9(11): 1110-1117, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29064488

RESUMEN

DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.


Asunto(s)
ADN/genética , Epigénesis Genética/genética , G-Cuádruplex , Ligandos , Transcripción Genética/genética
19.
Nat Commun ; 8(1): 1297, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101321

RESUMEN

X-chromosome inactivation is established during early development. In mice, transcriptional repression of the paternal X-chromosome (Xp) and enrichment in epigenetic marks such as H3K27me3 is achieved by the early blastocyst stage. X-chromosome inactivation is then reversed in the inner cell mass. The mechanisms underlying Xp reactivation remain enigmatic. Using in vivo single-cell approaches (allele-specific RNAseq, nascent RNA-fluorescent in situ hybridization and immunofluorescence), we show here that different genes are reactivated at different stages, with more slowly reactivated genes tending to be enriched in H3meK27. We further show that in UTX H3K27 histone demethylase mutant embryos, these genes are even more slowly reactivated, suggesting that these genes carry an epigenetic memory that may be actively lost. On the other hand, expression of rapidly reactivated genes may be driven by transcription factors. Thus, some X-linked genes have minimal epigenetic memory in the inner cell mass, whereas others may require active erasure of chromatin marks.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Epigénesis Genética , Factores de Transcripción/farmacocinética , Inactivación del Cromosoma X/genética , Animales , Femenino , Genes Ligados a X , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Modelos Genéticos , Embarazo , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual
20.
Cell Rep ; 15(4): 724-734, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27149840

RESUMEN

Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs) during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs) depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA