Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Glia ; 72(3): 529-545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38013496

RESUMEN

To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1ß in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 µM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.


Asunto(s)
Compuestos Bicíclicos con Puentes , Cannabidiol/análogos & derivados , Cannabinoides , Microglía , Ratones , Animales , Astrocitos , Lipopolisacáridos/toxicidad , Cannabinoides/farmacología , Encéfalo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
2.
J Clin Psychopharmacol ; 44(5): 472-480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008875

RESUMEN

BACKGROUND: Agomelatine is an antidepressant drug that acts as an agonist of melatoninergic MT1/2 receptors and an antagonist of serotonergic 5-HT2C receptors. Studies suggest that agomelatine has anxiolytic properties in social anxiety, but there are no studies that assessed the effects of this compound in human experimental anxiety induced by a public speaking test. The objective of our investigation was to assess the effects of agomelatine on human experimental anxiety using the Simulation Public Speaking Test (SPST). METHODS: Agomelatine (25 mg, n = 14), citalopram (20 mg, n = 14), venlafaxine (75 mg, n = 14), or placebo (n = 14) were administered in single doses to healthy volunteers in a double-blind study. Subjective anxiety was assessed with the Visual Analogue Mood Scale. Arterial blood pressure, heart rate, and blood levels of prolactin and cortisol were also recorded, as well as plasma levels of the 3 drugs. RESULTS: The SPST induced significant subjective, physiological, and hormonal effects in all groups. The SPST also increased the anxiety and decreased mental sedation Visual Analogue Mood Scale factors during the anticipatory and performance phases of the test. Citalopram increased anxiety during the test in females, whereas agomelatine and venlafaxine were not different from placebo. CONCLUSIONS: Confirming previous results, a serotonin selective reuptake inhibitor, citalopram, caused an anxiogenic effect in the SPST only in females. Acute administration of a low dose of agomelatine failed to modify the behavioral and physiological changes caused by this test. Future studies using higher doses and repeated administration should investigate if agomelatine behavioral and physiological effects could be detected in human experimental anxiety models.


Asunto(s)
Acetamidas , Citalopram , Clorhidrato de Venlafaxina , Humanos , Método Doble Ciego , Acetamidas/farmacología , Acetamidas/administración & dosificación , Acetamidas/efectos adversos , Masculino , Adulto , Femenino , Citalopram/farmacología , Citalopram/administración & dosificación , Adulto Joven , Clorhidrato de Venlafaxina/farmacología , Clorhidrato de Venlafaxina/administración & dosificación , Frecuencia Cardíaca/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Hidrocortisona/sangre , Ansiolíticos/farmacología , Ansiolíticos/administración & dosificación , Voluntarios Sanos , Prolactina/sangre , Naftalenos
3.
Nitric Oxide ; 146: 1-9, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428514

RESUMEN

BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.


Asunto(s)
Analgésicos , Cannabidiol , Fosfatidilinositol 3-Quinasa Clase Ib , Canales KATP , Neuralgia , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico , Transducción de Señal , Animales , Cannabidiol/farmacología , Canales KATP/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratones , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Analgésicos/farmacología , Analgesia
4.
Can J Psychiatry ; 69(4): 242-251, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37920963

RESUMEN

OBJECTIVE: The treatment of bipolar depression remains challenging due to the limited effective and safe therapeutic options available; thus, developing newer treatments that are effective and well tolerable is an urgent unmet need. The objective of the present trial was to test 150 to 300 mg/day of cannabidiol as an adjunctive treatment for bipolar depression. METHOD: A randomized, double-blind, placebo-controlled pilot study to assess the efficacy of adjunctive cannabidiol in bipolar depression was used. Efficacy parameters were changes in the Montgomery-Åsberg Depression Rating Scale (MADRS) from baseline to week 8. Secondary outcomes included response and remission rates, changes in anxiety and psychotic symptoms, and changes in functioning. Patients continued double-blind treatment until week 12 to monitor for adverse effects, laboratory analysis, and manic symptoms. Study registry: NCT03310593. RESULTS: A total of 35 participants were included. MADRS scores significantly decreased from baseline to the endpoint (placebo, -14.56; cannabidiol, -15.38), but there was no significant difference between the groups. Similarly, there were no other significant effects on the secondary outcomes. However, an exploratory analysis showed a significant effect of cannabidiol 300 mg/day in reducing MADRS scores from week 2 to week 8 (placebo, -6.64; cannabidiol, -13.72). There were no significant differences in the development of manic symptoms or any other adverse effects. CONCLUSION: Cannabidiol did not show significantly higher adverse effects than placebo. Despite the negative finding on the primary outcome, an exploratory analysis suggested that cannabidiol should be further studied in bipolar depression in higher doses of at least 300 mg/day and under research designs that could better control for high placebo response.


Asunto(s)
Trastorno Bipolar , Cannabidiol , Trastornos Psicóticos , Humanos , Trastorno Bipolar/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Proyectos Piloto , Depresión , Trastornos Psicóticos/tratamiento farmacológico , Método Doble Ciego , Resultado del Tratamiento
5.
Acta Neuropsychiatr ; : 1-4, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39389925

RESUMEN

Here, we have utilised the concept of fuzzy logic and Karl Popper's notion of verisimilitude to advocate navigating the complexity of psychiatric nosology, emphasising that psychiatric disorders defy Boolean logic. We underscore the importance of embracing imprecision and collecting extensive data for a more nuanced understanding of psychiatric disorders, asserting that falsifiability is crucial for scientific progress. We encourage the advancement of personalised psychiatric taxonomy, urging the continual accumulation of data to inform emerging advancements like artificial intelligence in reshaping current psychiatric nosology.

6.
Biochem Biophys Res Commun ; 660: 58-64, 2023 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-37068389

RESUMEN

Cannabidiol (CBD) is the most abundant non-psychoactive component found in plants of the genus Cannabis. Its analgesic effect for the treatment of neuropathy has been widely studied. However, little is known about its effects in the acute treatment when Cannabidiol is administered peripherally. Because of that, this research was aimed to evaluate the antinociceptive effects of the CBD when administered peripherally for the treatment of acute neuropathic pain and check the involvement of the 5-HT1A and the TRPV1 receptors in this event. Neuropathic pain was induced with the constriction of the sciatic nerve while the nociceptive threshold was measured using the pressure test of the mouse paw. The technique used proved to be efficient to induce neuropathy, and the CBD (5, 10 and 30 µg/paw) induced the antinociception in a dosage-dependent manner. The dosage used that induced a more potent effect (30 µg/paw), did not induce a systemic response, as demonstrated by both the motor coordination assessment test (RotaRod) and the antinociceptive effect restricted to the paw treated with CBD. The administration of NAN-190 (10 µg/paw), a selective 5-HT1A receptor antagonist, and SB-366791 (16 µg/paw), a selective TRPV1 antagonist, partially reversed the CBD-induced antinociception. The results of the research suggest that the CBD produces the peripheral antinociception during the acute treatment of the neuropathic pain and it partially involved the participation of the 5-HT1A and TRPV1 receptors.


Asunto(s)
Cannabidiol , Neuralgia , Ratones , Animales , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Serotonina , Neuralgia/tratamiento farmacológico , Modelos Animales de Enfermedad , Analgésicos/farmacología , Analgésicos/uso terapéutico , Receptor de Serotonina 5-HT1A , Canales Catiónicos TRPV
7.
Behav Pharmacol ; 34(4): 213-224, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171460

RESUMEN

Cannabidiol is a phytocannabinoid that lacks the psychotomimetic properties of Δ9-tetrahydrocannabinol (THC), the main psychoactive Cannabis sativa component. Cannabidiol has several potential therapeutic properties, including anxiolytic, antidepressant, and antipsychotic; however, cannabidiol has low oral bioavailability, which can limit its clinical use. Here, we investigated if two cannabidiol analogs, HU-502 and HU-556, would be more potent than cannabidiol in behavioral tests predictive of anxiolytic, antidepressant, and antipsychotic effects. Different doses (0.01-3 mg/kg; intraperitoneally) of HU-556 and HU-502 were tested in male Swiss mice submitted to the elevated plus maze (EPM), forced swimming test (FST), and amphetamine-induced-prepulse inhibition (PPI) disruption and hyperlocomotion. Cannabidiol is effective in these tests at a dose range of 15-60 mg/kg in mice. We also investigated if higher doses of HU-556 (3 and 10 mg/kg) and HU-502 (10 mg/kg) produced the cannabinoid tetrad (hypolocomotion, catalepsy, hypothermia, and analgesia), which is induced by THC-like compounds. HU-556 (0.1 and 1 mg/kg) increased the percentage of open arm entries (but not time) in the EPM, decreased immobility time in the FST, and attenuated amphetamine-induced PPI disruption. HU-502 (1 and 3 mg/kg) decreased amphetamine-induced hyperlocomotion and PPI impairment. HU-556, at high doses, caused catalepsy and hypolocomotion, while HU-502 did not. These findings suggest that similar to cannabidiol, HU-556 could induce anxiolytic, antidepressant, and antipsychotic-like effects and that HU-502 has antipsychotic properties. These effects were found at a dose range devoid of cannabinoid tetrad effects.


Asunto(s)
Ansiolíticos , Antipsicóticos , Cannabidiol , Cannabinoides , Ratones , Masculino , Animales , Cannabidiol/farmacología , Antipsicóticos/farmacología , Ansiolíticos/farmacología , Catalepsia/inducido químicamente , Antidepresivos/farmacología , Anfetamina , Dronabinol/farmacología
8.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202672

RESUMEN

Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.


Asunto(s)
Óxido Nítrico , Trastornos por Estrés Postraumático , Humanos , Miedo , Ácido Glutámico , Neurotransmisores , Proteínas Adaptadoras Transductoras de Señales
9.
Photochem Photobiol Sci ; 21(7): 1185-1192, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35325444

RESUMEN

Onychomycosis is the most common disease caused by fungal nail infections, and often caused by dermatophytes. This infection is very resistant to antifungal treatments, and promising Photodynamic Therapy (PDT) mediated treatments has been presented as a multitarget tracking. Optimization of PDT guide for uptake time, concentration of photosensitizers (PS) and the light dose to inactivate Trichophyton mentagrophytes. Curcumin derivatives, porphyrin Chlorin e6 (CHL-E6) and Chlorin-P6-6-N-butylamide-7-methyl-ester (CHL-butyl) were evaluated. PS photobleaching was observed on the hyphae photosensitized over the time, correlating the PS concentration and light dose of antifungal PDT. Porphyrin, Curcumin, Chl-e6 and Chl-butyl concentrations of 2.5 µg/mL, 0.025 µg/mL, 10 µg/mL and 5 µg/mL respectively, under illumination of 10.5 J/cm2 were the best antifungal conditions found in the study. Curcumin, in low concentrations, and chlorin were the PSs with higher activity anti-T. mentagrophytes.


Asunto(s)
Curcumina , Fotoquimioterapia , Porfirinas , Antifúngicos/farmacología , Curcumina/farmacología , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Trichophyton
10.
Eur J Neurosci ; 53(6): 1738-1751, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522084

RESUMEN

An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.


Asunto(s)
Cannabidiol , Disfunción Cognitiva , Animales , Isquemia , Ratones , Ratones Endogámicos C57BL , PPAR gamma , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Receptor de Serotonina 5-HT1A
11.
FASEB J ; 34(6): 7644-7660, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281181

RESUMEN

Mitochondrial function, largely regulated by the dynamics of this organelle, is inextricably linked to the oocyte health. In comparison with most somatic cells, mitochondria in oocytes are smaller and rounder in appearance, suggesting limited fusion. The functional implications of this distinct morphology, and how changes in the mitochondrial shape translate to mitochondrial function in oogenesis is little understood. We, therefore, asked whether the pro-fusion proteins mitofusins 1 (MFN1) and 2 (MFN2) are required for the oocyte development. Here we show that oocyte-specific deletion of Mfn1, but not Mfn2, prevents the oocyte growth and ovulation due to a block in folliculogenesis. We pinpoint the loss of oocyte growth and ovulation to impaired PI3K-Akt signaling and disrupted oocyte-somatic cell communication. In support, the double loss of Mfn1 and Mfn2 partially rescues the impaired PI3K-Akt signaling and defects in oocyte development secondary to the single loss of Mfn1. Together, this work demonstrates that the mitochondrial function influences the cellular signaling during the oocyte development, and highlights the importance of distinct, nonredundant roles of MFN1 and MFN2 in oogenesis.


Asunto(s)
Comunicación Celular/fisiología , GTP Fosfohidrolasas/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/fisiología , Oocitos/fisiología , Oogénesis/fisiología , Ovulación/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
12.
Acta Neuropsychiatr ; 33(5): 217-241, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34348819

RESUMEN

Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.


Asunto(s)
Biomarcadores/sangre , Depresión/tratamiento farmacológico , Depresión/genética , Metiltransferasas/antagonistas & inhibidores , Animales , Antidepresivos/farmacología , Encéfalo/metabolismo , Islas de CpG , Metilación de ADN/efectos de los fármacos , Depresión/sangre , Epigenómica , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Modelos Animales , Ratas , Ratas Wistar , Estrés Psicológico
13.
Mol Hum Reprod ; 26(12): 938-952, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33118034

RESUMEN

Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Oocitos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Femenino , GTP Fosfohidrolasas/genética , Homeostasis/fisiología , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal
14.
Pharmacol Res ; 156: 104749, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32151683

RESUMEN

Preclinical and clinical data indicate that cannabidiol (CBD), a non-psychotomimetic compound from the Cannabis sativa plant, can induce antipsychotic-like effects. In an animal model of schizophrenia based on the antagonism of NMDA receptors, the behavioral and molecular changes induced by repeated treatment with the NMDA receptor antagonist MK-801 were prevented when CBD was co-administered with MK-801. It is unknown, however, if CBD would reverse these changes once they have been established. Thus, in the present study we used male C57BL/6J mice, 6 weeks old, to evaluate whether daily CBD injection for seven days, starting after the end of the repeated treatment with MK-801 for 14 days, would reverse MK-801-induced deficits in the social interaction (SI) and novel object recognition (NOR) tests, which have been used to investigate the negative and cognitive symptoms of schizophrenia, respectively. We also assessed whether CBD effects would be blocked by pretreatment with AM251, a CB1 receptor antagonist, AM630, a CB2 receptor antagonist, or WAY100635, a 5-HT1A receptor antagonist. CBD and the second-generation antipsychotic clozapine, used as a positive control, attenuated the impairments in the SI and NOR tests induced by repeated administered MK-801. CBD effects were blocked by WAY100635, but not by AM251 or AM630. These data suggest that CBD induces antipsychotic-like effects by activating 5-HT1A receptors and indicate that this compound could be an interesting alternative for the treatment of negative and cognitive symptoms of schizophrenia.


Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cannabidiol/farmacología , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Prueba de Campo Abierto/efectos de los fármacos , Receptor de Serotonina 5-HT1A/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Transducción de Señal , Conducta Social
15.
Oral Dis ; 26(7): 1483-1493, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32400905

RESUMEN

PURPOSE: The aim of this study was to evaluate the clinical, histological, hematological, and oxidative stress effects of cannabidiol (CBD) in mice with induced oral mucositis. METHODS: We used 90 mice of the CF-1 strain in which oral mucositis was induced using a protocol with 5-fluorouracil (5-FU) chemotherapy. The animals were divided randomly into 10 study groups. Three groups were treated with different doses of CBD (3, 10, and 30 mg/kg), while 2 were control groups (positive control: 5-FU + mechanical trauma + placebo; and negative control: mechanical trauma + placebo), and 2 experimental times were studied (4 and 7 days). All treatments were by intraperitoneal administration. RESULTS: In the clinical evaluation, the groups treated with CBD showed less severity of oral lesions compared with the positive control at both experimental times. The intensity of the inflammatory response was also lower in the groups treated with this drug, but there was no statistically significant difference when compared with the positive control. With regard to erythrocyte, leukocyte, and platelet counts and anti-oxidant enzyme activity, the groups treated with CBD showed better results, but only some of these variables showed statistically significant differences. CONCLUSIONS: CBD seems to exert an anti-inflammatory and anti-oxidant activity favoring a faster resolution of oral mucositis in this animal model.


Asunto(s)
Mucositis , Estomatitis , Animales , Cannabidiol , Modelos Animales de Enfermedad , Fluorouracilo/efectos adversos , Mucosa Intestinal , Ratones , Estomatitis/inducido químicamente , Estomatitis/tratamiento farmacológico
16.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271741

RESUMEN

Different therapeutic strategies have been investigated to target and eliminate HIV-1-infected cells by using armed antibodies specific to viral proteins, with varying degrees of success. Herein, we propose a new strategy by combining photodynamic therapy (PDT) with HIV Env-targeted immunotherapy, and refer to it as HIV photoimmunotherapy (PIT). A human anti-gp41 antibody (7B2) was conjugated to two photosensitizers (PSs) with different charges through different linking strategies; "Click" conjugation by using an azide-bearing porphyrin attached via a disulfide bridge linker with a drug-to-antibody ratio (DAR) of exactly 4, and "Lysine" conjugation by using phthalocyanine IRDye 700DX dye with average DARs of 2.1, 3.0 and 4.4. These photo-immunoconjugates (PICs) were compared via biochemical and immunological characterizations regarding the dosimetry, solubility, and cell targeting. Photo-induced cytotoxicity of the PICs were compared using assays for apoptosis, reactive oxygen species (ROS), photo-cytotoxicity, and confocal microscopy. Targeted phototoxicity seems to be primarily dependent on the binding of PS-antibody to the HIV antigen on the cell membrane, whilst being independent of the PS type. This is the first report of the application of PIT for HIV immunotherapy by killing HIV Env-expressing cells.


Asunto(s)
Aniones , Fármacos Anti-VIH/farmacología , Cationes , Inmunoconjugados/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Aniones/química , Fármacos Anti-VIH/química , Anticuerpos Monoclonales , Apoptosis/efectos de los fármacos , Cationes/química , Línea Celular Tumoral , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , VIH/efectos de los fármacos , VIH/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Inmunoconjugados/química , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Replicación Viral/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Toxicol Appl Pharmacol ; 368: 63-71, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796934

RESUMEN

Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a µM concentration range: CBD (IC50 = 15 µM) and DMH-CBD (IC50 = 38 µM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 µM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2A antagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduces NF-kB activity at concentrations intimately associated with those that cause cell death, whereas DMH-CBD decreases NF-kB activity at non-toxic concentrations in an A2A receptor dependent-manner.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Cannabidiol/análogos & derivados , Cannabidiol/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Receptor de Adenosina A2A/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Agonistas del Receptor de Adenosina A2/toxicidad , Animales , Cannabidiol/química , Cannabidiol/toxicidad , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Fosforilación , Células RAW 264.7 , Receptor de Adenosina A2A/metabolismo , Vías Secretoras , Transducción de Señal , Células THP-1 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Bone Miner Metab ; 37(1): 18-27, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29344812

RESUMEN

There are few published data on the relationship between loss of bone mass due to osteoporosis and poor tooth quality. This study analyzed the effects of osteoporosis on incisor teeth and femoral bones using optical techniques in rats. Twenty female Wistar rats aged 6 months (n = 20) were randomized into two groups: control group, non-ovariectomized rats (n = 10); ovariectomy group, ovariectomized rats to induce osteoporosis (n = 10). Each group was subdivided randomly into two groups containing five rats each as follows. Control group 1: non-ovariectomized rats euthanized at the age of 9 or 3 months post-ovariectomy (n = 5); Control group 2: non-ovariectomized rats euthanized at the age of 1 year or 6 months post-ovariectomy (n = 5); ovariectomy group 1: ovariectomized rats euthanized at the age of 9 months or 3 months post-ovariectomy (n = 5); ovariectomy group 2: ovariectomized rats euthanized at the age of 1 year or 6 months post-ovariectomy (n = 5). The incisor teeth and femoral bones of Wistar rats were removed to perform Raman spectroscopy using an excitation laser at 785 nm. In addition, an energy-dispersive X-ray spectrometer system was used to evaluate calcium (Ca) and phosphorus (P). The main findings included significant changes (p < 0.05) for phosphate and carbonate band areas for both incisor teeth and femur bones. In addition, there was significant negative correlation between the P concentration and phosphate/carbonate ratio (lower P content-larger ratio, p < 0.05) for incisor teeth and femoral bones. The proline and CH2 wag band areas were significantly reduced only for the incisor teeth (p < 0.05). Therefore, Raman spectroscopy assessed the compositional, physicochemical and structural changes in hard tissue. The current study also pointed out the possible action mechanisms of these changes, bone fracture risk and dental fragility. It is important to emphasize that poor dental quality may also occur due to osteoporosis.


Asunto(s)
Fémur/patología , Incisivo/patología , Osteoporosis/patología , Ovariectomía , Espectrometría por Rayos X , Espectrometría Raman , Animales , Densidad Ósea , Femenino , Ratas Wistar , Factores de Tiempo
19.
Eur Arch Psychiatry Clin Neurosci ; 269(1): 121-133, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30706171

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rest tremor, postural disturbances, and rigidity. PD is also characterized by non-motor symptoms such as sleep disturbances, cognitive deficits, and psychiatric disorders such as psychosis, depression, and anxiety. The pharmacological treatment for these symptoms is limited in efficacy and induce significant adverse reactions, highlighting the need for better treatment options. Cannabidiol (CBD) is a phytocannabinoid devoid of the euphoriant and cognitive effects of tetrahydrocannabinol, and preclinical and preliminary clinical studies suggest that this compound has therapeutic effect in non-motor symptoms of PD. In the present text, we review the clinical studies of cannabinoids in PD and the preclinical and clinical studies specifically on CBD. We found four randomized controlled trials (RCTs) involving the administration of agonists/antagonists of the cannabinoid 1 receptor, showing that these compounds were well tolerated, but only one study found positive results (reductions on levodopa-induced dyskinesia). We found seven preclinical models of PD using CBD, with six studies showing a neuroprotective effect of CBD. We found three trials involving CBD and PD: an open-label study, a case series, and an RCT. CBD was well tolerated, and all three studies reported significant therapeutic effects in non-motor symptoms (psychosis, rapid eye movement sleep behaviour disorder, daily activities, and stigma). However, sample sizes were small and CBD treatment was short (up to 6 weeks). Large-scale RCTs are needed to try to replicate these results and to assess the long-term safety of CBD.


Asunto(s)
Cannabidiol/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Enfermedad de Parkinson/fisiopatología
20.
Acta Neuropsychiatr ; 31(1): 1-16, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29764526

RESUMEN

Cannabinoid signalling modulates several aspects of brain function, including the generation and survival of neurons during embryonic and adult periods. The present review intended to summarise evidence supporting a role for the endocannabinoid system on the control of neurogenesis and neurogenesis-dependent functions. Studies reporting participation of cannabinoids on the regulation of any step of neurogenesis and the effects of cannabinoid compounds on animal models possessing neurogenesis-dependent features were selected from Medline. Qualitative evaluation of the selected studies indicated that activation of cannabinoid receptors may change neurogenesis in embryonic or adult nervous systems alongside rescue of phenotypes in animal models of different psychiatric and neurological disorders. The text offers an overview on the effects of cannabinoids on central nervous system development and the possible links with psychiatric and neurological disorders such as anxiety, depression, schizophrenia, brain ischaemia/stroke and Alzheimer's disease. An understanding of the mechanisms by which cannabinoid signalling influences developmental and adult neurogenesis will help foster the development of new therapeutic strategies for neurodevelopmental, psychiatric and neurological disorders.


Asunto(s)
Sistema Nervioso Central , Endocannabinoides/fisiología , Trastornos Mentales , Enfermedades del Sistema Nervioso , Neurogénesis/fisiología , Receptores de Cannabinoides/metabolismo , Transducción de Señal/fisiología , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA