Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(1): 66-79, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36968221

RESUMEN

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand-based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)-containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. Significance: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB-based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings.


Asunto(s)
Glioblastoma , Subunidad alfa2 del Receptor de Interleucina-13 , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Inmunoterapia Adoptiva/métodos , Subunidad alfa2 del Receptor de Interleucina-13/genética , Interleucina-13/genética , Antígenos CD28/genética , Ligandos , Glioblastoma/terapia , Modelos Animales de Enfermedad
2.
bioRxiv ; 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36711615

RESUMEN

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumor microenvironments. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies, which are being harnessed to improve solid tumor CAR T cell therapies. Here, we describe fully optimized CAR T cells targeting tumor-associated glycoprotein-72 (TAG72) for the treatment of solid tumors, identifying the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. These findings have culminated into a phase 1 trial evaluating safety, feasibility, and bioactivity of TAG72-CAR T cells for the treatment of patients with advanced ovarian cancer ( NCT05225363 ). Preclinically, we found that CAR T cell-mediated IFNγ production facilitated by IL-12 signaling was required for tumor cell killing, which was recapitulated by expressing an optimized membrane-bound IL-12 (mbIL12) molecule on CAR T cells. Critically, mbIL12 cell surface expression and downstream signaling was induced and sustained only following CAR T cell activation. CAR T cells with mbIL12 demonstrated improved antigen-dependent T cell proliferation and potent cytotoxicity in recursive tumor cell killing assays in vitro and showed robust in vivo anti-tumor efficacy in human xenograft models of ovarian cancer peritoneal metastasis. Further, locoregional administration of TAG72-CAR T cells with antigen-dependent IL-12 signaling promoted durable anti-tumor responses against both regional and systemic disease in mice and was associated with improved systemic T cell persistence. Our study features a clinically-applicable strategy to improve the overall efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting both regional and systemic disease.

3.
Nat Commun ; 14(1): 4737, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550294

RESUMEN

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumors. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies. Here, we describe CAR T cells targeting tumor-associated glycoprotein-72 (TAG72), utilizing the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. CAR T cell-mediated IFNγ production facilitated by IL-12 signaling is required for tumor cell killing, which is recapitulated by engineering an optimized membrane-bound IL-12 (mbIL12) molecule in CAR T cells. These T cells show improved antigen-dependent T cell proliferation and recursive tumor cell killing in vitro, with robust in vivo efficacy in human ovarian cancer xenograft models. Locoregional administration of mbIL12-engineered CAR T cells promotes durable anti-tumor responses against both regional and systemic disease in mice. Safety and efficacy of mbIL12-engineered CAR T cells is demonstrated using an immunocompetent mouse model, with beneficial effects on the immunosuppressive tumor microenvironment. Collectively, our study features a clinically-applicable strategy to improve the efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting regional and systemic disease.


Asunto(s)
Neoplasias Ováricas , Receptores Quiméricos de Antígenos , Femenino , Humanos , Ratones , Animales , Inmunoterapia Adoptiva , Interleucina-12 , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Neoplasias Ováricas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Microambiente Tumoral
4.
EBioMedicine ; 77: 103941, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35301179

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment with enormous potential, demonstrating impressive antitumor activity in the treatment of hematological malignancies. However, CAR T cell exhaustion is a major limitation to their efficacy, particularly in the application of CAR T cells to solid tumors. CAR T cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive tumor microenvironment, and mitigating exhaustion to maintain CAR T cell effector function and persistence and achieve clinical potency remains a central challenge. Here, we review the underlying mechanisms of exhaustion and discuss emerging strategies to prevent or reverse exhaustion through modifications of the CAR receptor or CAR independent pathways. Additionally, we discuss the potential of these strategies for improving clinical outcomes of CAR T cell therapy.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/uso terapéutico , Microambiente Tumoral
5.
J Anim Sci ; 100(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35148394

RESUMEN

In vitro produced (IVP) embryos hold great promise in the cattle industry; however, suboptimal in vitro culture conditions induce metabolic dysfunction, resulting in poor development and low cryotolerance of IVP embryos. This limits the use of IVP embryos in the cattle industry for embryo transfer and commercial scale-up. Previous studies have reported the use of individual metabolic regulators in culture media to improve blastocyst development rates and cryopreservation. In this study, we hypothesized that using a combination of select regulators, chosen for their unique synergistic potential, would alleviate metabolic dysfunction and improve the development of in vitro produced embryos to make them more closely resemble in vivo derived embryos. To test this, we first compared lipid content between Holstein and Jersey embryos produced in vivo and in vitro, and then systematically determined the combination of metabolic regulators that led to the greatest improvements in embryonic development, lipid content, mitochondrial polarity, and cryotolerance. We also tested different slow freezing techniques to further improve cryotolerance and finally validated our results via a clinical trial. Overall, we found that the use of multiple metabolic regulators in one culture media, which we refer to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1), and an optimized slow freezing technique resulted in improved pregnancy rates for frozen IVP embryos compared to embryos cultured in a synthetic oviductal fluid media. Additionally, there was no difference in pregnancy rate between frozen and fresh IVP embryos cultured in SCF1. This suggests that optimizing culture conditions and slow freezing technique can produce cryotolerance IVP and should allow further dissemination of this assisted reproductive technology.


In vitro produced (IVP) bovine embryos suffer from several physiological abnormalities that interfere with their ability to withstand the freezing process, a vital step in shipping and distribution of IVP embryos. To overcome these challenges, we performed a series of experiments to determine the optimal culture medium to best support the developing embryo. This new in vitro embryo culture medium is referred to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1). The medium is supplemented with various factors to more closely mimic the uterine environment, improve mitochondrial function, and decrease lipid accumulation. The results show that IVP embryos cultured in SCF1, slow frozen using an optimized technique, and transferred into recipients have a pregnancy rate that is similar to non-frozen IVP embryos. These findings suggest that SCF1 improves developmental competence of bovine IVP embryos and their ability to withstand cryopreservation, which can improve pregnancy rates and efficiency of assisted fertility operations within the dairy cattle industry.


Asunto(s)
Criopreservación , Transferencia de Embrión , Animales , Blastocisto , Bovinos , Criopreservación/métodos , Criopreservación/veterinaria , Medios de Cultivo/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Transferencia de Embrión/veterinaria , Femenino , Fertilización In Vitro/veterinaria , Congelación , Embarazo , Índice de Embarazo
6.
Elife ; 92020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33331818

RESUMEN

WNT proteins are secreted symmetry breaking signals that interact with cell surface receptors of the FZD family to regulate a multitude of developmental processes. Studying selectivity between WNTs and FZDs has been hampered by the paucity of purified WNT proteins and by their apparent non-selective interactions with the FZD receptors. Here, we describe an engineered protein, called F7L6, comprised of antibody-derived single-chain variable fragments, that selectively binds to human FZD7 and the co-receptor LRP6. F7L6 potently activates WNT/ß-catenin signaling in a manner similar to Wnt3a. In contrast to Wnt3a, F7L6 engages only FZD7 and none of the other FZD proteins. Treatment of human pluripotent stem (hPS) cells with F7L6 initiates transcriptional programs similar to those observed during primitive streak formation and subsequent gastrulation in the mammalian embryo. This demonstrates that selective engagement and activation of FZD7 signaling is sufficient to promote mesendodermal differentiation of hPS cells.


Asunto(s)
Diferenciación Celular/fisiología , Receptores Frizzled/fisiología , Mesodermo/embriología , Células Madre Pluripotentes/fisiología , Western Blotting , Regulación de la Expresión Génica , Humanos , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes , Vía de Señalización Wnt/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA