Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nanotechnology ; 34(8)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541533

RESUMEN

As a powerful complement to positive photoconductance (PPC), negative photoconductance (NPC) holds great potential for photodetector. However, the slow response of NPC relative to PPC devices limits their integration. Here, we propose a facile covalent strategy for an ultrafast NPC hybrid 2D photodetector. Our transistor-based graphene/porphyrin model device with a rise time of 0.2 ms and decay time of 0.3 ms has the fastest response time in the so far reported NPC hybrid photodetectors, which is attributed to efficient photogenerated charge transport and transfer. Both the photosensitive porphyrin with an electron-rich and large rigid structure and the built-in graphene frame with high carrier mobility are prone to the photogenerated charge transport. Especially, the intramolecular donor-acceptor system formed by graphene and porphyrin through covalent bonding promotes photoinduced charge transfer. This covalent strategy can be applied to other nanosystems for high-performance NPC hybrid photodetector.

2.
Small ; 17(38): e2006530, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33896110

RESUMEN

Conversion and storage of solar energy into fuels and chemicals by artificial photosynthesis has been considered as one of the promising methods to address the global energy crisis. However, it is still far from the practical applications on a large scale. Nanoarray structures that combine the advantages of nanosize and array alignment have demonstrated great potential to improve solar energy conversion efficiency, stability, and selectivity. This article provides a comprehensive review on the utilization of nanoarray structures in artificial photosynthesis of renewable fuels and high value-added chemicals. First, basic principles of solar energy conversion and superiorities of using nanoarray structures in this field are described. Recent research progress on nanoarray structures in both abiotic and abiotic-biotic hybrid systems is then outlined, highlighting contributions to light absorption, charge transport and transfer, and catalytic reactions (including kinetics and selectivity). Finally, conclusions and outlooks on future research directions of nanoarray structures for artificial photosynthesis are presented.


Asunto(s)
Fotosíntesis , Energía Solar , Catálisis , Luz Solar
3.
Nanotechnology ; 32(41)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34198285

RESUMEN

Two-dimensional (2D) van der Waals heterojunctions have many unique properties, and energy band modulation is central to applying these properties to electronic devices. Taking the 2D graphene/MoS2heterojunction as a model system, we demonstrate that the band structure can be finely tuned by changing the graphene structure of the 2D heterojunction via ultraviolet/ozone (UV/O3). With increasing UV/O3exposure time, graphene in the heterojunction has more defect structures. The varied defect levels in graphene modulate the interfacial charge transfer, accordingly the band structure of the heterojunction. And the corresponding performance change of the graphene/MoS2field effect transistor indicates the shift of the Schottky barrier height after UV/O3treatment. The result further proves the effective band structure modulation of the graphene/MoS2heterojunction by UV/O3. This work will be beneficial to both fundamental research and practical applications of 2D van der Waals heterojunction in electronic devices.

4.
Nano Lett ; 19(2): 1234-1241, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30681870

RESUMEN

Dual-band-gap systems are promising for solar water splitting due to their excellent light-harvesting capability and high charge-separation efficiency. However, a fundamental understanding of interfacial charge-transfer behavior in the dual-band-gap configuration is still incomplete. Taking CdS/reduced graphene oxide (CdS/RGO) nanoheterojunctions as a model solar water splitting system, we attempt here to highlight the interaction-dependent interfacial charge-transfer behavior based on both experimental observations and theoretical calculations. Experimental evidence points to charge transfer at the CdS-RGO interface playing a dominant role in the photocatalytic hydrogen production activity. By tuning the degree of reduction of RGO, the interfacial interaction, and, thereby, the charge transfer can be controlled at the CdS-RGO interface. This observation is supported by theoretical analysis, where we find that the interfacial charge transfer is a balance between the effective single-electron- and hole-transfer probability and the surface free electron and hole concentration, both of which are related to the surface potential and tailored by interfacial interaction. This mechanism is applicable to all systems for solar water splitting, providing a useful guidance for the design and study of heterointerfaces for high-efficiency energy conversion.

5.
Nano Lett ; 19(9): 6133-6139, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430170

RESUMEN

Severe charge recombination in solar water-splitting devices significantly limits their performance. To address this issue, we design a frustum of a cone nanograting configuration by taking the hematite and Au-based thin-film photoanode as a model system, which greatly improves the photoelectrochemical water oxidation activity, affording an approximately 10-fold increase in the photocurrent density at 1.23 V versus the reversible hydrogen electrode compared to the planar counterpart. The surface plasmon polariton-induced electric field in hematite plays a dominant role in efficiency enhancement by facilitating charge separation, thus dramatically increasing the incident photon-to-current efficiency (IPCE) by more than 2 orders of magnitude in the near band gap of hematite. And the relatively weak electric field caused by light scattering in the nanograting structure is responsible for the approximate maximum 20-fold increase in IPCE within a broadband wavelength range. Our scalable strategy can be generalized to other solar energy conversion systems.

6.
Nano Lett ; 18(2): 1516-1521, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29360384

RESUMEN

Designing high-quality interfaces is crucial for high-performance photoelectrochemical (PEC) water-splitting devices. Here, we demonstrate a facile integration between polycrystalline n+p-Si and NiFe-layered double hydroxide (LDH) nanosheet array by a partially activated Ni (Ni/NiOx) bridging layer for the excellent PEC water oxidation. In this model system, the thermally deposited Ni interlayer protects Si against corrosion and makes good contact with Si, and NiOx has a high capacity of hole accumulation and strong bonding with the electrodeposited NiFe-LDH due to the similarity in material composition and structure, facilitating transfer of accumulated holes to the catalyst. In addition, the back illumination configuration makes NiFe-LDH sufficiently thick for more catalytically active sites without compromising Si light absorption. This earth-abundant multicomponent photoanode affords the PEC performance with an onset potential of ∼0.78 V versus reversible hydrogen electrode (RHE), a photocurrent density of ∼37 mA cm-2 at 1.23 V versus RHE, and retains good stability in 1.0 M KOH, the highest water oxidation activity so far reported for the crystalline Si-based photoanodes. This bridging layer strategy is efficient and simple to smooth charge transfer and make robust contact at the semiconductor/electrocatalyst interface in the solar water-splitting systems.

7.
Nano Lett ; 18(9): 5954-5960, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102049

RESUMEN

Because of inefficient charge utilization caused by localized π-electron conjugation and large exciton binding energy, the photoelectrochemical water-splitting efficiency of organic polymers is seriously limited. Taking the graphitic carbon nitride (g-CN) polymer as an example, we report a novel photoanode based on a vertically aligned g-CN porous nanorod (PNR) array prepared in situ, using a thermal polycondensation approach, with anodic aluminum oxide as the template. The g-CN PNR array exhibits an excellent photocurrent density of 120.5 µA cm-2 at 1.23 VRHE under one sun illumination, the highest reported incident photon-to-current efficiency of ∼15% at 360 nm, and an outstanding oxygen evolution reaction stability in 0.1 M Na2SO4 aqueous solution, which constitutes a benchmark performance among the reported g-CN-based polymer photoanodes without any sacrificial reagents. When compared with its planar counterpart, the enhanced performance of the PNR array results principally from its unique structure that enables a high degree of aromatic ring π-electron conjugation for higher mobility of charge carriers, provides a direct pathway for the electron transport to the substrate, produces a large portion of hole-accepting defect sites and space charge region to promote exciton dissociation, and also withstands more strain at the interface to ensure intimate contact with the substrate. This work opens a new avenue to develop nanostructured organic semiconductors for large-scale application of solar energy conversion devices.

8.
Nano Lett ; 13(6): 2436-41, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23675758

RESUMEN

Bright two-photon fluorescent probes are highly desirable to be able to optically probe biological activities deep inside living organisms with larger imaging depth, minor autofluorescence background, and less photodamage. In this study, we report the biocompatible nitrogen-doped graphene quantum dots (N-GQDs) as efficient two-photon fluorescent probes for cellular and deep-tissue imaging. The N-GQD was prepared by a facile solvothermal method using dimethylformamide as a solvent and nitrogen source. The two-photon absorption cross-section of N-GQD reaches 48,000 Göppert-Mayer units, which far surpasses that of the organic dyes and is comparable to that of the high performance semiconductor QDs, achieving the highest value ever reported for carbon-based nanomaterials. More importantly, a study of penetration depth in tissue phantom demonstrates that the N-GQD can achieve a large imaging depth of 1800 µm, significantly extending the fundamental two-photon imaging depth limit. In addition, the N-GQD is nontoxic to living cells and exhibits super photostability under repeated laser irradiation. The high two-photon absorption cross-section, large imaging depth, good biocompatibility, and extraordinary photostability render the N-GQD an attractive alternative probe for efficient two-photon imaging in biological and biomedical applications.


Asunto(s)
Materiales Biocompatibles , Puntos Cuánticos , Fluorescencia , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Fotones
9.
Adv Mater ; : e2211008, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37120723

RESUMEN

Confined catalysis under the cover of 2D materials has emerged as a promising approach for achieving highly effective catalysts in various essential reactions. In this work, a porous cover structure is designed to boost the interfacial charge and mass transfer kinetics of 2D-covered catalysts. The improvement in catalytic performance is confirmed by the photoelectrochemical oxidation evolution reaction (OER) on a photoanode based on an n-Si substrate modified with a NiOx thin-film model electrocatalyst covered with a porous graphene (pGr) monolayer. Experimental results demonstrate that the pGr cover enhances the OER kinetics by balancing the charge and mass transfer at the photoanode and electrolyte interface compared to the intrinsic graphene cover and cover-free control samples. Theoretical investigations further corroborate that the pore edges of the pGr cover boost the intrinsic catalytic activity of active sites on NiOx by reducing the reaction overpotential. Furthermore, the optimized pores, which can be easily controlled by plasma bombardment, allow oxygen molecules produced in the OER to pass through without peeling off the pGr cover, thus ensuring the structural stability of the catalyst. This study highlights the significant role of the porous cover structure in 2D-covered catalysts and provides new insight into the design of high-performance catalysts.

10.
J Am Chem Soc ; 133(28): 10878-84, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21639097

RESUMEN

The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H(2) production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)(2)) as the CdS precursor. These nanosized composites reach a high H(2)-production rate of 1.12 mmol h(-1) (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles. This work highlights the potential application of graphene-based materials in the field of energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA