Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 70(4): 1183-1195, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30649398

RESUMEN

Plasma membrane (PM) recovery from the impaired dry state is essential for seed germination, but its underlying mechanism remains unclear. In this study, we found that ZmANN33 and ZmANN35, two annexin genes in maize, encode proteins that participate in PM recovery during seed germination. The expression of both genes was up-regulated during seed germination and strongly repressed by chilling (either 15 or 5 °C) as compared with the normal temperature (25 °C). In addition, the increased membrane damage caused by chilling imbibition was correlated with suppressed expression of ZmANN33 and ZmANN35, while rapid recovery of their expression levels accompanied the rescue of the damaged membrane. Arabidopsis seedlings ectopically expressing ZmANN33 or ZmANN35 had longer seedling length than wild-type (WT) plants during the recovery period after 3 d of chilling stress, indicating the positive roles of these two gene products in the plant's recovery from chilling injury. Moreover, these transgenic seedlings had lower lipid peroxidation and higher peroxidase activities than WT during the recovery period. Consistently, root cells of these transgenic seedlings had more intact PM after chilling stress, supporting the proposition that ZmANN33 and ZmANN35 contribute to the maintenance of PM integrity. The enhanced PM integrity is likely due to the accelerated exocytotic process after chilling stress. We also showed that both ZmANN33 and ZmANN35 localized in the cytosol near the plasma membrane. Thus, we conclude that ZmANN33 and ZmANN35 play essential roles in membrane recovery during maize seed germination.


Asunto(s)
Anexinas/genética , Membrana Celular/metabolismo , Germinación/genética , Proteínas de Plantas/genética , Semillas/fisiología , Zea mays/fisiología , Anexinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Zea mays/genética
2.
Front Plant Sci ; 8: 1153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725229

RESUMEN

Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H2O2 priming notably increased the endogenous H2O2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2, and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H2O2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2, and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2. The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H2O2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights:Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H2O2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and energy supply, hormones metabolism and regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA